The Brights

Подписчиков: 0     Сообщений: 23     Рейтинг постов: 69.4

The Brights эволюция лингвистика ...Всё самое интересное 

Зарождение языка и речи

  "Дети способны создавать собственные, никогда не существовавшие языки. В 1986 г. лингвисту из Университета Южного Мэна Джуди Кегль(русский интернет не знает Джуди Кегль,он знает лишь Judy Shepard-Kegl,если кто искать будет) удалось наблюдать рождение одного такого языка.

Всё самое интересное,интересное, познавательное,,разное,The Brights,эволюция,лингвистика

  В тот год Кегль отправилась в Никарагуа, намереваясь побывать в школах для глухих детей. Никарагуанское правительство организовало несколько таких школ в начале 1980-х, но дело шло туго. Попадая в школу, дети, как правило, знали только несколько простых жестов, придуманных ими в общении с родителями. В школах детей не обучали настоящему языку жестов, а пытались ограничиться лишь «пальцевым письмом», где различные знаки представляют отдельные буквы. Считалось, что пальцевое письмо должно помочь ученикам перейти к произнесению слов, но, поскольку дети совершенно не представляли, чему их пытаются научить, проект провалился.

  Учителя заметили, что, хотя дети достигают понимания с ними с большим трудом, между собой они общаются свободно. Никто из них уже не пользовался жалким набором жестов, привезенных из дома. Общение шло при помощи богатой новой системы, непонятной учителям. Кегль попросили приехать в школы и помочь учителям разобраться в происходящем.

  Выяснилось, что тинейджеры в средней школе пользовались примитивным пиджином, собранным из придуманных ими жестов, понятных им всем. Но младшие дети в начальной школе занимались гораздо более сложными вещами. Кегль с изумлением увидела, как они сигналят друг другу с пулеметной скоростью, причем их «фразы» несли в себе ритм и логику. Все свидетельствовало о том, что между ними в ходу настоящий язык жестов, обладающий собственной грамматикой. Чем младше были дети, тем более бегло они изъяснялись на этом таинственном языке. «По одному тому, как были организованы и структурированы их жесты, можно было понять, что здесь происходит что-то необычное, — рассказывает Кегль. — Вскоре стало ясно, что я наблюдаю раннюю стадию рождения языка».

  Первые несколько лет Кегль работала над расшифровкой этого языка без особенного успеха. Иногда удавалось узнать расшифровку знака или фразы у детей, иногда приходилось просто наблюдать за долгими разговорами. В 1990 г. Кегль вместе с детьми начала смотреть мультфильмы; она просила детей объяснить ей, что происходит на экране. Мультфильмы и стали для ученого новым Розеттским камнем.

  Кегль обнаружила, что жесты детей изящны, умны и выразительны. На пиджине, которым пользовались подростки, слово «говорить» обозначалось жестом, в котором все пять пальцев разводились и вновь соединялись перед губами. Дети воспользовались этим подражательным жестом и усилили его: они открывали пальцы на позиции говорящего и вновь смыкали на позиции того, к кому была обращена речь. Они также изобрели способ пользоваться предлогами вместо глаголов. Фраза «Чашка стоит на столе» (The cup is on the table) жестами никарагуанцев выражалась примерно как «Стол чашка на» (Table cup ons). Хотя англоговорящему человеку такое построение может показаться диким, другие языки — к примеру, язык индейцев навахо — регулярно им пользуются.

  Много лет, с самого первого своего визита в Никарагуа, Кегль вместе с общиной глухонемых составляла словарь нового языка жестов. На настоящий момент в словаре более 1600 слов. Одновременно она разработала теорию происхождения этого языка. Дети приезжали в школы, не имея других средств общения кроме нескольких простых жестов, причем у каждого жесты были свои. Дети объединили их в общий набор и получали пиджин, которым в момент появления ученого уже пользовались подростки. Затем в школе появились дети помладше, чей мозг был настроен на восприятие языка; они подхватили жесты старших детей и обогатили их грамматикой. Маленькие дети вдруг, на пустом месте создали язык, который с самого начала был не менее сложным и полным, чем любой из традиционных звуковых языков. А стоило настоящему языку появиться, и новые впечатления детей начали обогащать его новыми словами.

<..>

  Мы, люди современного типа, используем для членораздельной речи очень своеобразный анатомический аппарат; ни у одного млекопитающего, помимо человека, ничего подобного нет. У других млекопитающих — включая шимпанзе — гортань располагается высоко в горле. Такое устройство позволяет животным дышать одновременно с поглощением пищи или питья, потому что дыхательные пути и пищевод полностью разделены. Но по этой же причине голосовой тракт — от гортани до рта — получается очень коротким. Языку просто не хватает места для того, чтобы свободно двигаться и производить сложные звуки.

зевная /(глоточнаяУ полость .,Всё самое интересное,интересное, познавательное,,разное,The Brights,эволюция,лингвистика

  Скорее всего, в какой-то момент эволюции гоминид гортань опустилась в то нижнее положение, которое она и сегодня занимает в человеческом горле. Такое анатомическое устройство связано с риском, поскольку пища и питье у нас гораздо легче попадают в дыхательные пути, чем у других млекопитающих, и могут вызвать удушье. Зато при этом возникает дополнительное пространство, в котором язык может двигаться и создавать весь тот репертуар звуков, без которого невозможен устный язык.

  Это не означает, что развитие языка не могло начаться, пока гортань не заняла свое нынешнее место. Гоминиды могли, к примеру, общаться жестами, ведь судя по орудиям, изготовленным 2,5 млн лет назад, руки у них уже были способны на тонкие и точные движения. Они могли сочетать эти жесты с простыми звуками и движениями; из сочетания всего этого вполне мог появиться некий протоязык. А когда такая система общения возникла и утвердилась, включился естественный отбор в пользу большого мозга, способного оперировать еще более сложной системой символов, и низкой (человеческой) гортани, способной издавать более разнообразные звуки.

  Никто не знает точно, в каком порядке шла эволюция речи и языка, поскольку характер речи почти не оставляет на человеческом скелете следов. Гортань — непрочная хрящевая конструкция, которая, конечно, не сохраняется. Гортань подвешена на тонкой подковообразной подъязычной кости, но разрушительное действие времени, как правило, затрагивает и ее. Вместо этого многие исследователи обращаются к косвенным данным, которыми могут поделиться с нами древние кости гоминид. Ученые смотрят на угол основания черепа в надежде рассчитать длину голосового тракта. Они измеряют величину отверстия, через которое в череп входит нерв, управляющий языком. Они рассматривают отпечаток мозга на черепной коробке в поисках речевых центров. В каждом случае исследователи заявляли, что нашли свидетельства зарождения языка. Но скептики показали, что ни одно из этих свидетельств не может считаться надежным указанием на существование в тот момент речи.

  Имея в виду, что даже сохранившиеся материальные свидетельства — впрочем, довольно жалкие — вызывают такие дебаты, неудивительно, что специалисты не могут прийти к единому мнению в вопросе о том, когда язык и речь человека обрели современную форму. К примеру, Лесли Айелло из лондонского Юниверсити-колледжа уверен, что увеличение размеров мозга, начавшееся 500 000 лет назад, принесло с собой членораздельную речь. Робин Данбар, с другой стороны, предполагает, что речь возникла всего лишь 150 000 лет назад. По его мнению, только к этому времени группы, которыми жили наши предки, выросли настолько, что груминг как социальный инструмент утратил смысл. Язык и членораздельная речь заменили в сообществах гоминид груминг и другие примитивные формы взаимодействия, призванные поддерживать социальную структуру.

  Язык помогает человеку отслеживать, чем занимаются другие и что они говорят о вас. Кроме того, при помощи слов можно манипулировать другими людьми и удерживать свое место в большом обществе. Даже сегодня язык в основном служит инструментом сплетни. Данбар давно прислушивается к разговорам людей в кафе и электричках и неизменно находит, что темой для двух третей подобных разговоров служат другие люди. Язык, утверждает Данбар, — тот же груминг, только другими средствами.

  Некоторые исследователи считают, что даже возраст 150000 лет, предложенный Данбаром, — это слишком много, и речь возникла значительно позднее. Эти ученые убеждены, что настоящий развитый язык, возможно, появился всего лишь 50000 лет назад. Только тогда материальные останки человека показывают серьезный ментальный скачок, едва ли не взрыв; именно в этот момент люди начали понимать себя и окружающий мир так, как не могли даже вообразить предыдущие поколения. Именно тогда родилось современное сознание, и решающим фактором его возникновения вполне могла стать членораздельная речь".

эволюция
ТРИУМФ ИДЕИ
Карл Циммер
Захватывающая история эволюционной теории — от Дарвина до науки XXI века
ЁЭ
Династия,Всё самое интересное,интересное, познавательное,,разное,The Brights,эволюция,лингвистика

Циммер К. «Эволюция. Триумф идеи». М.: Альпина нон-фикшн, 2012. Стр. 441-449.

Развернуть

The Brights психология неврология ...Всё самое интересное 

Синестезия реальная и мнимая

Синестезия — это достаточно произвольное установление избыточных связей между теми отделами мозга, которые в норме связаны слабее. Поэтому вариантов синестезии бывает много. Но поскольку близкие отделы связываются с большей вероятностью, среди синестетиков преобладают определенные типы, например, самая распространенная синестезия — буквенно-цветовая — когда каждая буква алфавита всегда окрашена определенным цветом. Связанные с цветом синестезии выявляются при помощи батарей тестов, в которых каждое изображение (или звук, или еще что) повторяется многократно, и каждый раз нужно выбирать соответствующий ему цвет. Индивидуальных картинок много, а исследуется количество совпадений ответов при повторах. Редкие формы синестезий, то есть, более отдаленные и неочевидные связки ощущений, обычно встречаются не сами по себе, а в комплекте с другими, более частыми. 

В статье — http://www.ncbi.nlm.nih.gov/pubmed/22197149 — рассказывается о редком виде синестезии, когда вид человека или его изображение вызывает ощущение одновременного восприятия определенного цвета, то есть, возникает эффект, похожий на «ауру». Авторы изучают восприятие «ауры» у четырех таких синестетиков и у четырех эзотериков (не-синестетиков), утверждающих, что они способны видеть «ауру». 

У всех четырех синестетиков из статьи комплект синестезий свой, причем они такие замечательно разные, что хочется описать все: 

F — студент университета 22 лет, имеющий следующие распространенные синестезии: музыкально-цветовую, запахово-цветовую, буквенно-цветовую. В дополнении к этому он испытывает цветовые ощущения (фотизм) в ответ на появление знакомых лиц. На совсем незнакомые лица эффект слабый и требует концентрации на изображении. Но если показывать одно и то же изображение, делая его знакомым, то эффект тоже начинает появляться.

R — студент 20 лет, его синестезии: буквенно-цветовая, численно-цветовая, цветовые же реакции на имена, фамилии, людей как таковых, города и имена городов, абстрактные концепции, музыку и натуральные звуки. Его фотизмы тесно связаны с эмоциями: если стимулы эмоционально окрашены, они вызывают сильные и стойкие цветовые эффекты.

L — студентка 23 лет, изучающая психологию, но также занимающаяся классическим балетом. Ее цветовые синестезии: на вкус, прикосновения, людей. Кроме того, у нее есть замечательная нецветовая синестезия «человек-животное», когда у человека голова как бы замещается головой животного. (Как тут не вспомнить тотемы, а?) Ее фотизмы ассоциированы с движениями: то, что делает человек, определяет возникающие фотизмы. Особенно силен эффект в отношении движений классического балета.

M — студентка и художник 37 лет, с исключительными способностями к математике. У нее возникают цветовые ощущения в ответ на графемы, обозначения дней недели и месяцев, музыку, а также есть численно-пространственная синестезия, при которой числа ощущаются расположенными в пространстве строго определенным образом (часто довольно замысловатым). В ответ на изображение человека или его присутствие у нее возникает сложный комплекс ощущений: цвета, числа и температуры. Например, она связывает свои ощущения со взаимоотношениями с данным человеком, описывая это следующим образом: «это коллаж из моих отношений к человеку и отошений человека ко мне при социальном взаимодействии, воспринимаемый как течение теплых или холодных цветов». Появляющиеся в то же время числа от 0 до 5 обозначают прохладные отношения, выше 5 означают дружбу, влечение (7-8) или любовь (9). (Как по мне, офигительно удобно. Встречаешь человека, а тебе сразу выдается: «уровень дружелюбности 6». Хочу себе такую синестезию).

Все синестетики не имели «эзотерических верований». Эзотерики же, наоборот, не имели синестезий (по самоощущениям и результатам тестов). Из четырех эзотериков двое утверждали, что дар видеть «ауру» им присущ с рождения, и двое других — что научились. Двое из них (один природный и один выученный) занимаются чтением «ауры» профессионально, еще один зарабатыват на жизнь нетрадиционной медициной и говорит, что чтение «ауры» помогает ему в работе.

Во всех услучаях использовался модифицированный тест Струпа — "Эффект струпа":«В психологии эффектом Струпа (англ. Stroop effect) называют задержку реакции при прочтении слов, когда цвет слов не совпадает с написанными словами (к примеру, слово красный написано синим)». В данном случае это был «аура-Струп тест», устроенный следующим образом. Испытуемым несколько раз предъявляли набор фотографий людей. С каждым синестетиком проводилось четыре разных теста, при этом задания каждого теста был модифицирован под особенности синестезии испытуемых:

1) испытуемый оценивал эмоцию на снимке как позитивную либо негативную, и дожен был нажать на соответствующую кнопку (тест для участника R, синестезия которого основана на эмоциональных реакциях)
2) испытуемый оценивал, знакомы ли ему лица на фото, использовались фотографии известных актеров и обычных людей (дизайн для участника F, для синестезии которого важен уровень новизны изображения)
3) испытуемый разделял фотографии действий человека на жестокие либо нейтральные, профессионально-заученные (тест для R (эмоции вообще) и M (отношение к происходящему))
4) предъявлялись видеоролики движений человка влево либо вправо (L, чувствительная к движениям)

Во всех случаях то место на экране, где испытуемый обычно видит ауру подцвечивалось каким-то цветом. Если ощущение цвета действительно состыковано физически в голове с восприятием человека, то при подцвечивании места ауры она будет видна сильнее, если цвет подсветки совпадает с цветом ауры, либо слабее если цвета разные, из-зи смешения наблюдаемых цветов. Соответственно, будет различаться время реакции человека — время, необходимое ему для оценки своих ощущений, обычно спаренных с цветом ауры. Тесты были повторены через 2 недели: если аура действительно возникает, то повторность в тестах будет высока. 

Эзотерики выполняли такое же задание. Однако, поскольку они представляют «ауру» как проявление энергетики живого человека и могут не увидеть ее на фотографии, с ними проводился дополнительный тест, в котором участвовали живые люди (40 человек). Эзотерики выбрали комфортные для себя условия наблюдения «ауры» — естественное освещение, люди должны стоять около белого экрана, время первичного оценивания цвета «ауры» неограниченно. Она сообщали экспериментатору цвет видимой «ауры». Затем с проводился Струп-тест, аналогичный описанному вверху с фотографиями, но уже с живыми людьми.

У синестетиков был обнаружен значимый эффект Струпа и высокая повторность результатов. У эзотериков эффекта Струпа не обнаружилось ни в варианте с фотографиями, ни в варианте с людьми. Уровень повторности оценки цвета «ауры» также оказался низок (корреляция статистически незначима). 

Забавным образом получается, что синестетики, отрицающие у себя эзотерические верования, реально видят «ауру». А эзотерики, зарабатывающие «аурой» на кусок хлеба с маслом, похоже, не видят ничего. Разумеется, авторы статьи такого вывода не делают, и вообще деликатно акцентируются на разнице между эзотерическим видением «ауры» и синестетическим. Например, в эзотерической литературе «аура» многослойна, с разным цветом слоев, и поэтому эзотерики могли не иметь эффекта Струпа. Как по мне, аргумент слабый, потому что ведь эзотериков же никто не тянул за язык, так? Сказали бы, например, «первый слой ауры голубенький, второй желтый», и проецировали бы им двуслойно, или только в пределах первого слоя. Короче, модифицировали бы тест.

Источник — http://catta.livejournal.com/128853.html

Развернуть

The Brights психология заблуждения песочница ...Всё самое интересное 

Апофения или поиск сюжетов в реальном мире

“Писатели и сценаристы давно овладели приемом общих мест, доступных любому читателю и зрителю, поэтому созданные ими сюжеты могут удовлетворить любой ум и вкус. Первым делом нужен такой образ главного героя, чтобы читатель или зритель имел возможность отождествить себя с ним. Герой становится намного ближе, если у него пошла полоса неудач, если он терпит поражение или сбивается с пути праведного. Отважный человек, идущий один против множества врагов, безоговорочно вызывает вашу симпатию. В начале фильма или книги герой спасает неважно кого — главное, что спасает, — и отныне вы уже любите его. Герою обязательно мешает трусливый негодяй или законченный эгоист, а еще лучше настоящий злодей, причиняющий людям сплошные мучения, пренебрегающий всеми нормами морали. Герой — желательно вместе с героиней — покидает свой привычный мир, и начинаются приключения. Когда его поражение или даже гибель кажутся неизбежными, он превозмогает все трудности, одолевает врага, попутно спасая город или целый мир. Затем наш герой, который благодаря испытаниям сделался еще лучше, с триумфом возвращается домой. Правда, если предполагается жанр трагедии, конец для героя окажется еще печальнее начала.

Американский филолог Джозеф Кэмпбелл посвятил жизнь сравнительному анализу мифологий народов мира, выявляя и исследуя единые для всего человечества образы, сюжеты и модели поведения, — тот материал, из которого сплетались истории, известные всем с детства. Сюжет, что мы набросали выше, представляет собой, согласно Кэмпбеллу, мифологическую схему странствия героя, и если вспомнить все книги и фильмы, прочитанные и пересмотренные с детства, вы убедитесь, что почти каждая история представляет собой вариации на одну и ту же тему. Сюжетный архетип — странствие героя, — пройдя путь от фольклора и античной драмы до кинематографа и видеоигр, входит в ваш мозг, словно ключ в замок.

Вы с удовольствием смотрите, как хорошо оплачиваемые актеры профессионально разыгрывают действо, ведь для вас естественно мыслить мифологемами, устоявшимися сюжетами и любимыми образами; более того, вы и реальных людей склонны воспринимать в виде знакомых персонажей. Точные науки, основанные на логических рассуждениях, не столь понятны вашему рассудку, как социальные ситуации. Отчетливо представляя свою роль и место на сцене, которая называется историей вашей жизни, вы и в своих воспоминаниях, как при просмотре фильма, пролистываете и отбрасываете все скучное и выделяете главные узлы — сюжетные архетипы.

Вы верите в определенный тип сюжета, в детектив, развертывающийся в реальном мире, что-то вроде «Кода да Винчи» или «Остаться в живых», где таинственные совпадения находятся в центре общего замысла, и все время, как части единой мозаики, появляются некие подсказки, в итоге удивительным образом совпадающие. Разумеется, такие сюжеты, которые медленно раскрывают свою тайну, завораживают, и мы неотрывно читаем страницу за страницей или ставим диск с очередной серией, чтобы поскорее узнать, как дальше повернутся события, а главное — как в итоге все разрешится.

Поиск сюжетов в реальном мире — это особый диагноз, апофения. Термин «апофения» охватывает множество явлений: от техасского стрелка до парейдолии — оптических иллюзий. Как вы помните, синдром техасского стрелка заключается в том, чтобы нарисовать мишень вокруг случайных явлений и обрести таким образом смысл в хаосе. Парейдолия — это умение разглядеть в облаках или ветках деревьев лица, символические знаки и «скрытые сообщения». Апофения отказывается верить в случайность и совпадения, для нее не существует фонового шума.

Апофения обычно возникает при синхронизме, то есть временных и событийных совпадениях. Вам кажется, что мир насыщен «говорящими» числами, даже если умом вы понимаете, что в них нет ничего особенного. Когда числа, составляющие дату, выстраиваются в интересную последовательность, например 08.09.10, люди склонны придавать этому особый смысл. Как не обратить внимание, если неупорядоченная стихия времени вдруг обретает особый ритм. Вы бросили взгляд на часы — 11:11. В следующий раз посмотрели — 12:12. На миг душу пронзает ощущение чуда — и жизнь продолжается. Но случаются и более разительные совпадения: например, ночью вам снится потоп, а утром в новостях вы слышите, что в каком-то отдаленном уголке Земли разразилось наводнение, тысячи людей остались без крова — и холодок бежит по спине.

Но когда совпадения и случайные числовые последовательности кажутся вам чем-то большим, чем случайно поданный сигнал, — с этого момента апофения превращается в настоящую проблему. Вы воображаете, например, что среди ваших знакомых и близких смерть всегда приходит трижды, и вас нисколько не смущает мысль о бренности любой жизни. Вы придаете особый смысл тому обстоятельству, что ваш день рождения совпадает с днем рождения десятка ваших любимых артистов, и полностью игнорируете вероятность, что в тот же день родились еще приблизительно 16 миллионов человек. Число 23 обретет над вами особую власть, ибо оно все время вам попадается — по правде говоря, не чаще любого другого, но так случилось, что вы его выделили. Профессиональные игроки, просидев всю ночь напролет, начинают различать некие последовательности в картах или «серии» в рулетке, хотя вероятность выпадения того или иного числа или карты всегда остается постоянной. Человеку, трижды подряд выигравшему в лотерею, по вашему мнению, помогает волшебная удача, но скучная статистика говорит, что подобное случается довольно часто.

Если все события своей жизни вы соединяете в сюжет и придаете этому сюжету высшее, мистическое значение, это уже истинная апофения. Скажем, вы переходите через дорогу, какой-то бомж хватает вас за пиджак и оттаскивает в сторону, буквально спасая от проносящегося мимо мотоцикла. Вы предлагаете ему деньги в награду за спасение жизни, но бродяга гордо отказывается. На следующий день вы читаете в газете, что в вашем городе стало больше бездомных, и это превращается в настоящую проблему. Неделю спустя вы заглядываете в Интернет в поисках интересной работы и обнаруживаете вакансию социального работника, причем именно в том городе, куда вам давно хотелось переехать. Может показаться, что история вашей жизни складывается из подобных событий, подводящих вас к предназначению — помогать бедным. Вы бросаете работу, переезжаете в другой город и с увлечением беретесь за новое дело. С такой точки зрения апофения не так уж плоха: вам требуется вера и смысл, чтобы каждое утро заставлять себя жить, преодолевая повседневные трудности. Только нельзя забывать, что смысл не приходит извне, смысл жизни — это сугубо внутренний процесс.

Ваш разум устроен таким образом, что повсюду различает порядок, даже если порядок задается культурой, а не нашими органами чувств. Древние греки и жители Вавилона приписывали числам мистическое значение, а потому находили то или иное число во всех аспектах человеческой жизни. То же самое можно сказать и о первых христианах, которые особо чтили Троицу и число три. Во всех религиях и культурах какие-то числа получают преимущество перед другими, и сразу вступает в свои права апофения, побуждая людей видеть эти «символические» числа повсюду. Вы предпочитаете круглые числа, к которым вас приучила десятичная система счисления, и по возможности группируете предметы и события в аккуратные кучки по 10, 50,100 и т. д. На десятичной системе счисления основана и наша монетарная система.

Скептики противопоставляют апофении закон больших чисел: при достаточно большом количестве случайных событий и чисел совпадения неизбежны. На Земле живет без малого 7 миллиардов человек, тут любые случайности становятся неизбежностью, однако люди обращают внимание на совпадения, запоминают их, пересказывают друг другу, интересные случаи попадают в новости, а миллионы не нагруженных смыслом ситуаций просто никого не интересуют. В результате вы живем словно в средоточии сюжетов, где главную роль играют совпадения.

Известный английский математик, профессор Кембриджского университета Джон Идензор Литлвуд описал законы больших чисел в книге «Математическая смесь» (Littlewood’s Miscellany), вышедшей уже после его смерти, в 1986 году. Он приводит простое соображение: за восемь часов активной и сознательной ежедневной деятельности с человеком ежесекундно что-то происходит, то есть за 35 дней он в среднем переживает миллион микрособытий, а значит, даже то событие, которое, на его взгляд, выпадает раз на миллион, вполне может произойти раз в месяц. Это правило ежемесячного чуда получило название «закон Литлвуда».

Апофения возникает главным образом из-за предвзятости подтверждения — одного из самых распространенных когнитивных искажений. Вы видите лишь то, что хотите видеть, игнорируя все остальное. Когда вы хотите увидеть некий смысл в своей жизни, то все прочее, что не несет этого смысла, вами выбрасывается за борт. Апофения — это не просто порядок, сотворенный из хаоса, это уверенность, что именно данный смысл вам было предназначено увидеть. Чудеса в жизни происходят крайне редко, потому вам надо следить за ними внимательно и расшифровывать значение каждого. Однако с математической точки зрения доказано, что чудо происходит каждый раз, когда вы перелистываете страницы этой книги.


Макрэйни Д. «Психология глупостей. Заблуждения, которые мешают нам жить». М.: «Альпина Бизнес Букс», 2012. Стр. 105-110.

Развернуть

The Brights технологии ботаника экология экономика ...Всё самое интересное 

Фермы-небоскребы

Всё самое интересное,интересное, познавательное,,разное,The Brights,технологии,ботаника,экология,экономика

Площадь земель, снабжающих все 6,8 млрд жителей нашей планеты сельскохозяйственной продукцией, равна площади Южной Америки. По прогнозам демографов, мировое народонаселение к 2050 г. Возрастет до 9,5 млрд. Производительности сельского хозяйства человечеству придется освоить еще 0,85 млрд га (площадь Бразилии). Но такого количества земли для нового освоения просто не существует. Как тут не вспомнить слова великого Марка Твена: «Покупайте землю, ее больше не делают»?

В сельском хозяйстве на ирригацию идет 70% мировых запасов пресной воды, которая после загрязнения удобрениями, пестицидами, гербицидами и илом становится непригодной для питья. При современных тенденциях развития невозможно сохранить чистоту питьевой воды в отдельных густонаселенных регионах. В сельском хозяйстве также используется огромное количество топлива: в США, например, — 20% от всего потребляемого бензина и дизельного топлива. Безусловно, в первую очередь нас беспокоит парниковый эффект. Учтем, что в цену на пищевые продукты входит и цена на топливо. Ввиду этого за 2005 – 2008 гг. стоимость продуктов питания возросла в большинстве мест по всему миру примерно вдвое. 

Некоторые агрономы уверяют, что решение проблемы лежит в области интенсификации производства, которое уже сегодня ведется высоко механизированными сельскохозяйственными объединениями. Число их постоянно снижается, но они получают большие урожаи за счет применения достижений генной инженерии и все более сильных агрохимикатов. Даже если претворить упомянутое решение в жизнь, то это может дать в лучшем случае лишь краткосрочный результат, т.к. быстрые климатические изменения влекут за собой перестройку сельскохозяйственных угодий, расстраивая самые изощренные планы. Вскоре после вступления в должность президента Барака Обамы министр энергетики Стивен Чу (Steven Chu) заявил о климатических изменениях, которые могут стереть с лица земли поля Калифорнии к концу этого столетия. 

Более того, если мы продолжим массовые вырубки леса под новые сельскохозяйственные угодья, глобальное потепление усилится с катастрофической скоростью. А увеличенный сток с полей и животноводческих ферм может привести к образованию «мертвых водных зон», когда большинство эстуариев и даже часть океана превратятся в бесплодные отравленные акватории. 

Все это пока не вызывало тревоги, но болезни, связанные с употреблением испорченной пищи, унесли изрядное число жизней по всему миру. Виной тому стали сальмонеллез, холера, кишечные инфекции, вызванные Escherichia coli, дизентерия. И этот список далеко не полон. Паразитарные инфекции — малярия и шистосомоз — усугубляют проблему, угрожая жизни людей. Более того, применение в качестве удобрений человеческих фекалий, широко практикуемое в большей части Юго-Восточной Азии, во многих регионах Африки, Центральной и Южной Америки, где химические удобрения слишком дороги, способствует распространению глистных инвазий, от которых страдает 2,5 млрд чел.

Очевидно, что нужны радикальные перемены. Почти со всеми перечисленными проблемами мог бы покончить один стратегический сдвиг — выращивание сельскохозяйственных культур под строгим контролем в закрытом грунте в вертикально обустроенных хозяйствах. Растения, выращенные в высотных зданиях, воздвигаемых ныне на свободных городских землях, и главным образом в многоярусных теплицах, размещенных на крышах, могли бы давать пропитание круглый год, потребляя значительно меньше воды, производя небольшое количество отходов, с меньшим риском инфекционных заболеваний. При этом не требуется работающей на ископаемом топливе техники или транспортных средств для перевозки продукции с отдаленных ферм. Вертикальные хозяйства могли бы совершить революцию в нашем образе питания и послужить для будущего растущего населения. Продукты, выращенные на местах, могли бы стать даже вкуснее.

Рабочий план, который я собираюсь изложить, может показаться на первый взгляд неправдоподобным. Но инженеры, градостроители, агрономы, тщательно исследовавшие необходимые технологии, убеждены, что вертикальные хозяйства не просто возможны, но необходимы.

➡ Не навреди

Выращивание пищи на земле, которая когда-то была покрыта девственными лесами и степями, убивает нашу планету, запуская процесс нашего вымирания. Людям следует выполнять хотя бы минимальное требование, которое на языке медиков звучит: «Не навреди». В данном случае мы говорим о том, что не следует наносить дальнейшего ущерба земле. Человечество возникло, чтобы отвоевать себе невероятные преимущества. Со времен Чарлза Дарвина — середины 1800-х гг. и далее — после предостережений Томаса Мальтуса о конце мира из-за неконтролируемого роста населения был осуществлен целый ряд спасительных технологических прорывов. Всевозможные сельскохозяйственные машины, улучшенные удобрения и пестициды, искусственно выведенные растения, обладающие большей продуктивностью и устойчивостью к болезням, плюс вакцины и лекарства от общих заболеваний животных привели к избытку пищи, в котором увеличивающееся население планеты порой не испытывало нужды. 

Все это продолжалось до 80-х гг. прошлого столетия, когда стало очевидным, что во многих местах нагрузка сельского хозяйства на землю чрезмерно превысила ее возможность поддерживать жизнеспособность культивируемых растений. Сельскохозяйственные химикаты нарушили естественный кругооборот питательных веществ, благодаря которому существуют природные экосистемы. Мы должны перейти к более экологичным агротехническим методам, способствующим устойчивости экосистем. 

Известный эколог Говард Одум (Howard Odum) сказал: «У природы есть ответы на все вопросы. Какой хотите задать вы?» Мой вопрос таков: «Как нам всем жить хорошо, одновременно с этим возобновляя мировые экосистемы?» Многие климатологи, от должностных лиц Продовольственной и сельскохозяйственной организации ООН (ФАО) до специалиста по устойчивому развитию и лауреата Нобелевской премии 2004 г. Вангари Маатхаи (Wangari Maathai), согласны, что дать возможность обрабатываемым землям вернуться к их естественному состоянию, покрыться травой или лесом, — это самый легкий и прямой путь к замедлению климатических изменений. Природные экосистемы естественным способом поглощают из окружающего воздуха углекислый газ, столь сильно способствующий парниковому эффекту. Надо оставить биосферу в покое и дать ей возможность вылечить нашу планету.

Здесь можно привести множество примеров. Зона демилитаризации между Южной и Северной Кореей, созданная после Корейской войны 1950–1953 гг., представляла собой полосу сильно изрытой войной земли шириной более 4 км, однако сегодня она целиком восстановилась, покрыта пышной растительностью и полна жизни. Когда-то превращенный в голую землю рубеж, разделявший бывшие Западную и Восточную Германию, сегодня радует зеленью. Район пыльных бурь США, в 30-х гг. прошлого столетия лишенный растительности из-за засух и чрезмерного сельскохозяйственного использования, сегодня снова стал высокопродуктивной житницей страны. А в Новой Англии, с 1700-х гг. пострадавшей от сплошной вырубки деревьев по крайней мере три раза, сегодня имеются обширные участки лиственных и хвойных лесов.

➡ Взгляд в будущее

По ряду причин все увеличивающееся население мира нуждается в альтернативных методах ведения сельского хозяйства. Неужели городские небоскребы — верный выбор? 

Отчасти, поскольку выращивание урожая в закрытом грунте становится повсеместным. Во всем мире успешно используются три вида агроприемов: капельное орошение, аэропоника и гидропоника. При капельном орошении растения укореняются в лотках из легких инертных материалов длительного пользования, таких как вермикулит, а тонкие трубки, протянутые от растения к растению, подведены точно к основанию каждого стебля, куда по каплям поступает питательный раствор. Таким образом отпадает необходимость в большом количестве воды, напрасно расходуемой при традиционных способах орошения. При выращивании методом аэропоники, разработанном в 1982 г. К.Т. Хубиком (K.T. Hubick), а затем усовершенствованной учеными NASA, растения находятся в подвешенном состоянии в воздухе, насыщенном водным паром и питательными веществами, вследствие чего исключается необходимость и в почве. 

Агроному Уильяму Джерику (William F. Gericke) приписывается разработка в 1929 г. Современной гидропоники. Корни растений помещаются в желобах без почвы, по которым циркулирует питательный раствор. Во время Второй мировой войны на южных островах Тихого океана с помощью гидропоники было получено около 4 тыс. т овощей для армий союзных держав. Сегодня теплицы, применяющие гидропонику, служат подтверждением основных правил растениеводства закрытого грунта: культуры должны давать урожай круглый год; разрушительные засухи и наводнения не мешают урожаю; ввиду идеальных условий для роста и созревания культур достигаются максимальные урожаи; патогенное влияние человека — минимально. 

Самое важное то, что гидропоника позволяет выбрать место произрастания урожая безотносительно природных условий, т.е. характеристик почвы, осадков, температуры воздуха. Закрытые хозяйства могут быть размещены везде, где есть соответствующее снабжение водой и энергией. Теплицы больших размеров с применением гидропоники работают в Великобритании, Нидерландах, Дании, Германии, Новой Зеландии и других странах. Один из выдающихся примеров — хозяйства Eurofresh Farms в пустыне штата Аризона, занимающие площадь в 128,79 га, где круглый год производится большое количество высококачественных помидоров, огурцов и перца. 

Большинство теплиц расположены на границе сельской местности и городских земель, где можно найти участки по умеренным ценам. Перевозка на большие расстояния повышает стоимость продуктов, требует расхода топлива, сопровождается выбросами двуокиси углерода и значительно вредит природе. Перенесение тепличного хозяйства в более высокие постройки в черте города поможет устранить и эти проблемы. Я представляю себе здания, возможно, в 30 этажей, занимающие целый квартал. При таких масштабах вертикальные хозяйства обещают стать примером действительно устойчивой городской жизни: коммунальные сточные воды преобразуются в оросительные, при этом твердые отходы вместе с несъедобными частями растений сжигаются, а образующийся пар вращает турбины, генерирующие электроэнергию, которая поступает в теплицы. С использованием современных технологий в закрытом грунте может быть выращен большой ассортимент съедобных растений (илл. на стр. 57). По соседству в аквацентрах можно будет также разводить рыбу, креветок и млллюсков. 

Субсидии на начальные исследования и финансируемые государством научно-исследовательские центры — один из путей, чтобы положить начало вертикальным хозяйствам. Совместная работа университетов и таких компаний, как, например, Cargil, Monsanto, Archer Daniels Midland и IBM, также могла бы быть хорошим начинанием. Для реализации любого из упомянутых подходов потребуется огромный научный потенциал сельскохозяйственных, технических, архитектурных и учебных учреждений, а также опытные хозяйства, возможно, высотностью в пять этажей и площадью 0,5 га. На таких площадках выпускники вузов, научные сотрудники и конструкторы смогут проводить первоначальные испытания перед тем, как появятся полноценные действующие хозяйства. Можно было бы опробовать и более скромные площадки на крышах жилых домов, больниц и учебных заведений. Научно-исследовательские установки уже действуют в Калифорнийском университете в Дэвисе, Государственном университете Пенсильвании, Университете Рутгерса, Государственном университете Мичигана, а также в ряде учебных заведений Европы и Азии. Один из самых известных экспериментальных полигонов — Сельскохозяйственный центр под руководством Джина Джакомелли (Gene Giacomelli) при Университете Аризоны. 

Интеграция пищевого производства в городскую жизнь — это гигантский шаг на пути устойчивого развития городов. Станут развиваться новые отрасли производства, а также появятся совершенно новые для города профессии — служащие питомников, растениеводы, сборщики урожая. И природа сможет снова ожить, а обычные фермеры будут рады выращивать траву и деревья, внося свою лепту в обуздание выбросов CO2. В завершение картины выборочные лесозаготовки станут нормой для деревообрабатывающей промышленности, по крайней мере в восточной части США.

➡ Страстная мечта

Прошло пять лет с того момента, как я впервые опубликовал некоторые свои мысли и предварительные эскизы вертикальных ферм на своем сайте (www.verticalfarm.com). С тех пор архитекторы, инженеры, конструкторы и ведущие организации стали все больше обращать внимание на данный проект. Сегодня на его сторону встали многие инвесторы, мэры и градостроители, выразив недвусмысленное желание строить высотные фермы. Ко мне уже обращались планировщики из Нью-Йорка, Портленда, Орегона, Лос-Анджелеса, Лас-Вегаса, Сиэтла, Суррея, Британской Колумбии, Торонто, Парижа, Бангалора, Дубаи, Абу-Даби, Инчхона, Шанхая и Пекина. Иллинойсский технологический институт в настоящее время занят проработкой подробного плана для Чикаго. 

Все эти люди сознают, что мы должны приступить к действию, чтобы обеспечить будущее поколение продуктами питания. Они ставят трудные вопросы по поводу стоимости, прибыли от инвестированного капитала, использования воды и электроэнергии, возможных урожаев. Их беспокоят будущее состояние балок конструкций, которые с течением времени подвергнутся коррозии во влажном воздухе, мощности, необходимые для закачки воды и воздуха в различные места этих сооружений, экономия, обусловленная ростом масштабов производства. Чтобы дать подробные ответы, потребуется немалая работа инженеров, архитекторов, агрономов, специалистов по закрытому грунту и деловых людей. Вероятно, подающие надежды инженеры и экономисты хотели бы, чтобы уже начались соответствующие расчеты. 

Благодаря сайту инициатива по обустройству вертикальных ферм оказалась в руках общественности. И ее успех или провал зависит как от тех, кто возьмется построить опытную ферму, так и от того, сколько времени и усилий это потребует. Печально известный проект замкнутой экосистемы «Биосфера-2», стартовавший в 1991 г. и представлявший собой сеть герметичных зданий близ Тусона, штат Аризона, в которых в течение двух лет проживали восемь поселенцев, — яркий пример того, как не надо делать. В плане была заложена слишком громоздкая конструкция, и он не был экспериментально обоснован. У Университета Аризоны сейчас есть все права пересмотреть данный проект. 

Чтобы сооружение вертикальных ферм прошло успешно, планировщики должны избежать ошибок данного и других ненаучных предприятий. Есть обнадеживающая новость. По словам Питера Хеда (Peter Head), одного из ведущих специалистов по экологическим проектам, руководящего глобальным планированием в международной проектно-конструкторской фирме Arup, базирующейся в Лондоне, для сооружения большого эффективного вертикального хозяйства в городе не требуется применения новых технологий. Многие энтузиасты спросят: «Тогда чего мы ждем?» У меня нет однозначного ответа на этот вопрос.

Диксон Д. «В мире науки» № 1, 2010. Стр. 53-59. Перевод В.И. Сидоровой.

Развернуть

The Brights скептицизм психология псевдонаука ...Всё самое интересное 

Миф об «Эффекте Моцарта»

  Это средство избавляет от головной боли. И вообще от любой боли. И от избыточного веса. Оно успешно излечивает астму, алкоголизм, шизофрению, писчий спазм, сердечную недостаточность и даже СПИД. При его использовании быстрее прорастают семена злаков и улучшается вкус потребляемой пищи. Но самое главное — оно способно сделать вас умнее. Поэтому в американском штате Флорида уже выделены казенные средства на его использование в детских садах — на протяжении минимум получаса ежедневно. В штатах Джорджия и Теннесси оно официально рекомендовано новорожденным наряду с традиционными прививками. В общественном колледже Нью-Йорка для его использования выделено специальное помещение (администрацию не смутило, что ради этого пришлось потесниться библиотеке). По всей Америке ширится движение за повсеместное включение соответствующих занятий в школьную программу. А в штате Индиана уже разработано устройство для потребления этого средства плодом в утробе матери.


  Что же это за философский камень, открывающий перед человечеством столь блестящие перспективы? Это музыка! Точнее — музыка Моцарта. О ее магической силе повествует книга Дона Кэмпбелла «Эффект Моцарта: музыка, исцеляющая тело и укрепляющая разум». Книга вышла несколько лет назад в американском издательстве «Эйвон Букс» и по сей день не покидает список бестселлеров. Воодушевленный обретенной популярностью, ее автор активно гастролирует по городам и весям с публичными лекциями, попутно приторговывая компакт-дисками с собственной компиляцией фрагментов из произведений Моцарта. Слушатели — преимущественно педагоги и родители — раскупают билеты на лекции за недели вперед, диски расходятся нарасхват.


  У здравомыслящего человека, привыкшего к вспышкам обывательского ажиотажа по поводу всевозможных панацей, очередной бум может вызвать скептическое отношение или по крайней мере настороженность. Слишком уж всё это похоже на торговлю пузырьками с «лекарством от всех болезней», когда-то процветавшую на базарах в дремучей глубинке. Но Дон Кэмпбелл демонстративно дистанцируется от подобного шарлатанства, утверждая, что его открытие основывается на неоспоримых научных данных. Коли это действительно так, то психологам недопустимо игнорировать столь яркий феномен. Из каких же данных исходит Кэмпбелл в своих сенсационных суждениях?


➡ Университетский эксперимент


  Толчком к появлению торговой марки «Эффект Моцарта» послужила краткая заметка в октябрьском номере журнала Nature за 1993 год (Кэмпбеллу понадобилось 4 года, чтобы на две колонки журнального текста нарастить столько подробностей, чтобы хватило на целую книгу). В ней сообщалось об интересном эксперименте, который провели в Калифорнийском университете Фрэнсис Раушер, Гордон Шоу и Катарина Кей.


  Испытуемыми в этом опыте выступили 36 студентов университета. В течение 10 минут им предлагалось послушать ре-мажорную сонату Моцарта для двух фортепьяно, запись звуков природы, традиционно используемую как аудиоматериал для релаксации, либо просто посидеть это время в тишине. Затем им предлагалось выполнить своеобразный интеллектуальный тест: листок бумаги у них на глазах несколько раз складывался и надрезался; студентам надо было мысленно представить получившийся узор и выбрать соответствующий вариант из пяти предлагавшихся образцов. По имеющимся данным, результаты этого теста хорошо коррелируют с показателем IQ. Так вот, после прослушивания Моцарта успешность выполнения задания заметно повышалась, что соответствовало возрастанию IQ на 8–9 баллов, — в сравнении с предварительным отдыхом в тишине или прослушиванием релаксационной аудиозаписи. Правда, этот эффект был кратковременным, наблюдался лишь на протяжении эксперимента, а впоследствии исчезал.


  Калифорнийские исследователи высказали гипотезу: не существуют ли некие врожденные «музыкальные структуры», аналогичные «языковым структурам» (существование которых было в свое время постулировано Ноэмом Хомским, однако никем не доказано, а Б.Ф. Скиннером и активно оспорено). Не связана ли гармония, заключенная в музыке, с паттернами мозговой активности, которые лишь в последние годы нейрофизиологи научились досконально исследовать? Если эта гипотеза верна, то не может ли музыка пробуждать определенные виды активности, присущие мозгу? И если это так, то не является ли музыка некоей предъязыковой или даже надъязыковой формой речи, непосредственно определяющей мыслительные процессы? Произведение Моцарта было избрано исследователями по той причине, что если кому-то удалось воплотить эту врожденную внутреннюю гармонию, то именно Моцарту. Кто еще прославился созданием столь блестящих музыкальных произведений в столь раннем возрасте? (Как известно, сочинять музыку он начал в пять лет, а свою первую симфонию создал в девять.)


  В своих суждениях Раушер, Шоу и Кей, как и подобает ученым, были весьма осторожны, чего, однако, не скажешь о падких на сенсации СМИ. Публикация в Nature была молниеносно растиражирована борзописцами под крикливым заголовком — «Музыка прибавляет ума!» Так появился на свет «эффект Моцарта», который на своем коротком пути из психологической лаборатории к поп-психологическому бестселлеру изменился до неузнаваемости и именно в своем растиражированном варианте приобрел всемирную известность.


➡ Для смягчения нравов


  Впрочем, справедливости ради речь следовало бы вести не о рождении, а о своего рода реинкарнации. Представления о том, что музыка способна отточить ум и возвысить дух, уходят корнями в глубокую древность. Подобные идеи встречаются еще в рассуждениях Конфуция. На Западе они ассоциируются с воззрениями пифагорейцев на мировую гармонию и составляют важный аспект учения Платона об идеальном государстве.


  По мнению Платона, идеальное государство не может быть построено людьми, далекими от идеала, поэтому в основу государственного строительства должно быть положено воспитание гармонично развитых граждан. Важнейшими средствами достижения этой цели античный мыслитель считал гимнастику и музыку. Роль первой понятна — она совершенствует тело, приближая его к идеалу. По мнению Платона, аналогичную роль выполняет музыка в отношении духа. Будучи созвучна движениям души, соответствующая музыка способна возвышать дух и побуждать благородные порывы.


  Правда, не всякая музыка играет такую позитивную роль. В соответствии со своими представлениями о душевной и музыкальной гармонии Платон даже дает конкретные рекомендации насчет того, какую музыку полезно использовать для духовного совершенствования, а какой, напротив, следует избегать ввиду ее разлагающего влияния. (Интересно, как бы оценил древний философ многообразную палитру современных музыкальных стилей и жанров?)


  Концепция идеального государства не нашла своего практического воплощения — как сочли бы скептики, в силу своей очевидной утопичности. Но эстетико-педагогические воззрения Платона не были забыты. В конце XVI в. во Франции, раздираемой религиозными междоусобицами, возникла идея создания Академии Поэзии и Музыки. Патронировавший это начинание король Карл IX видел задачу академии в смягчении общественных нравов посредством насаждения в народных массах высокой музыкальной культуры. В своем эдикте он писал: «Огромное значение для народных нравов имеет поддержание в музыке должного порядка, ибо дурная музыка толкает к дурному поведению, а хорошая способствует благонравию и терпимости».


  К сожалению, монарший прожект также оказался утопией и нисколько не способствовал смягчению кровопролитной распри католиков и гугенотов. Хотя из данного примера очевидно, что идея, воплощенная в эффекте Моцарта, носилась в воздухе задолго до «открытия» Кэмпбелла, по крайней мере еще за два столетия до рождения самого Моцарта.


➡ Под руководством Волочковой


  Беда в том, что никаких практических подтверждений действия этого эффекта невозможно найти ни в прошлом, ни в настоящем. Похоже, замечательный эффект существует лишь в виде красивой идеи, которая, увы, не работает. Иначе можно было бы рассчитывать, что близкие к идеалу государственные мужи должны вырастать в стенах балетных училищ, где в полном соответствии с платоновской утопией гимнастика сочетается с музыкой. Но попробуйте представить «идеальное государство», управляемое людьми вроде Рудольфа Нуриева или Анастасии Волочковой. При всем уважении к их балетным талантам, перспектива жить в таком государстве не воодушевляет.

  

  Резонно было бы также предположить, что выдающиеся композиторы и исполнители должны были бы составлять интеллектуальную элиту человечества. Но, увы, помимо их неоспоримой музыкальной одаренности, история не сохранила никаких свидетельств их исключительного интеллекта. И наоборот — о сколько-нибудь заметных музыкальных способностях выдающихся ученых и мыслителей также никаких свидетельств не сохранилось.


  Разумеется, бывают яркие личности, обладающие разносторонними способностями. Например, Ричард Фейнман, автор всемирно известных «Фейнмановских лекций по физике», сфотографировался для форзаца этой книги со своими любимыми барабанами-бонго; знаменитый комик Вуди Аллен, чей язвительный юмор высоко ценят и обыватели, и интеллектуалы, на досуге развлекается игрой на саксофоне, а крупнейший финансист современности Алан Гринспен начинал свою карьеру музыкантом джазового оркестра. Но на основании подобных частных примеров никак не вывести научную закономерность.


  Судя по всему, никакого эффекта Моцарта, если не обращать внимания на поднятую вокруг него шумиху, просто не существует.

Кстати, вскоре после нашумевшего калифорнийского исследования опыт Раушер и ее коллег был повторно воспроизведен в психологической лаборатории Университета г. Окленд, но... с нулевым результатом. А ведь вопроизводимость открытого феномена — важнейший критерий его научной достоверности. Сама Раушер также предприняла подобные попытки, но была вынуждена констатировать, что методическая сторона опыта нуждается в совершенствовании. В частности, ее внимание привлек один из аспектов экспериментальной ситуации, ранее никак не учтенный, — существует ли какое-либо различие между выполнением теста теми студентами, которые действительно слушали музыку (то есть достаточно сосредоточенно и прочувствованно), и теми, для кого она выступала лишь звуковым фоном, на который они не очень-то обращали внимание.


➡ В отсутствие доказательств


  Как это ни покажется странным, параметры музыки как таковой в первоначальном опыте совершенно не были приняты во внимание. Завороженные блестящей репутацией Моцарта как признанного гения, исследователи фактически наугад выбрали из его произведений такое, которое отвечало простейшему критерию компактности, не более того.


  Формулируя свою гипотезу, Раушер и коллеги предположили, что «однообразная музыка с предсказуемыми повторяющимися ходами, по всей вероятности, не способствует абстрактному мышлению, а, наоборот, препятствует ему». Тем самым словно был брошен очередной камень в огород современной «попсы», все «шедевры» которой построены по принципу «два прихлопа — три притопа». Однако по такому критерию и фуги Баха следовало бы признать отупляющими, а наиболее интеллектуально стимулирующими — изыски авангардного джаза, в котором даже сам исполнитель не в силах предсказать, какую ноту извлечет следующей.


  Интересно, что, по мнению многих знатоков, фортепианная соната ре мажор, использованная в эксперименте, — едва ли не самое слабое, неудачное и примитивное из всех сочинений Моцарта, весьма однообразное по своему содержанию. То есть результатом эксперимента можно считать лишь тот факт, что прослушивание не самого выразительного произведения Моцарта может (?) способствовать кратковременному повышению IQ. И всё!


  Так или иначе, профессор Раушер, которая сегодня работает в Университете штата Висконсин, продолжает начатую ранее линию исследований, однако никаких сенсаций ее опыты пока не подарили. Что вполне характерно для подлинно научного подхода к спорной и неоднозначной проблеме. Увы, этого не скажешь про мистера Кэмпбелла, сумевшего коммерциализировать сырую гипотезу и превратить ее в рыночный продукт.


  Помимо патетически преувеличенных результатов спорного эксперимента, упоминавшегося выше, бестселлер Кэмпбелла никаких научных доказательств не содержит. Зато переполнен голословными притязаниями вроде тех, что приведены в первых строках этого очерка. Причем это лишь малая часть из более чем полусотни проявлений эффекта Моцарта, пропагандируемого автором. Причем для специалистов в большинстве случаев очевидна не просто их бездоказательность, но и ложность.


  К примеру, Кэмпбелл повествует об исключительной пользе музыки Моцарта для лечения аутизма. При этом он ссылается на самоотчеты некоей Джорджи Стели, которая более или менее успешно излечилась, в том числе якобы и благодаря музыке. Кэмпбелл, ссылаясь на Стели, констатирует тот факт, что в ходе лечения музыка звучала. А коли лечение оказалось успешным, то налицо причинно-следственная зависимость. Однако на самом деле, как явствует из полной истории болезни девочки, музыка для нее выступала сильнейшим раздражителем, причинявшим ей, наряду с другими внешними стимулами, страдания. Эффект терапии состоял в том, чтобы добиться смягчения болезненных реакций.


  Иными словами, налицо явная подтасовка фактов в пользу сомнительной гипотезы.


➡ Самосовершенствование по-быстрому


Критики этой гипотезы справедливо указывают на факт достаточно очевидный. Если пресловутый эффект действительно существует, то наиболее выраженным должно было бы быть его влияние на тех, кто не только постоянно слушает музыку Моцарта, но и исполняет ее, то есть на профессиональных музыкантов. Это должны были бы быть исключительно здоровые люди — физически и душевно, отличающиеся высокими нравственными качествами и недюжинным умом. В действительности же это не так. Не говоря уже о том, что сам Моцарт был человеком крайне болезненным и особыми личностными достоинствами не блистал. Так и современные музыканты, даже виртуозы, в большинстве случаев ничем, кроме своей музыкальной одаренности, не превосходят врачей или бухгалтеров, или, скажем, автомехаников, многие из которых даже не слышали о Моцарте.


  Подводя итог, приходится констатировать, что пресловутый эффект Моцарта — это всего лишь еще один мыльный пузырь из тех, которые с удивительным постоянством периодически выпускаются для соблазна любителей самосовершенствования. Спрос на такие пустышки непреходящ и, вероятно, объясняется массовым стремлением достичь интеллектуального и личностного роста по-быстрому и без значительных усилий, лишь за счет необременительного изменения вспомогательных условий или кратковременного выполнения незамысловатых упражнений.


  Это ягода того же поля, что и гипнопедическое обучение посредством так называемого сублиминального восприятия, «просвещение» плода в утробе матери или краткосрочные тренинги, обещающие в ходе совместных забав превратить хоровод неудачников в созвездие лидеров.


  До тех пор, пока в массовом сознании не укрепится убеждение, что интеллектуальное и личностное совершенствование требует упорных и длительных усилий, подобные псевдооткрытия будут множиться и дальше. Но профессионализм психолога отчасти и состоит в том, чтобы знать им подлинную цену и не участвовать в раздуваемом вокруг них ажиотаже.


Сергей Степанов

Всё самое интересное,интересное, познавательное,,разное,The Brights,скептицизм,психология,псевдонаука

Развернуть

The Brights физика наука ...Всё самое интересное 

Поиски суперсимметрии на коллайдере принесли новую интригу

Две коллаборации, работающие на Большом адронном коллайдере, сообщают, что в одном из многочисленных поисков суперсимметрии обнаружилось небольшое превышение над предсказаниями Стандартной модели. Оба коллектива видят отклонение в схожих, но всё же не идентичных, процессах. 

Статистическая значимость превышения невелика, около 3 стандартных отклонений, но это превышение дает новую надежду на то, что физика за пределами Стандартной модели уже не за горами.

Физика элементарных частиц сегодня: краткий набросок

  Современная физика элементарных частиц находится последние годы в достаточно некомфортной ситуации. С одной стороны, в ее распоряжении есть теория — так называемая Стандартная модель, — которая замечательно согласуется с экспериментами. Она была построена в 60-70-е годы, привела к множеству предсказаний, которые великолепно подтвердились в последующие десятилетия. Последним в этой серии достижений стало открытие бозона Хиггса в 2012 году и последовавшее за ним присуждение Нобелевской премии по физике авторам хиггсовского механизма. Все эти годы Стандартная модель выдерживала тысячи экспериментальных проверок. Всевозможные тонкие и замысловатые эффекты, которые она предсказывала и которые удавалось сосчитать теоретически, неизменно подтверждались.

  С другой же стороны, физикам давно достоверно известно, что Стандартная модель не может быть окончательной теорией устройства микромира. Стандартная модель не способна объяснить наличие темной материи и доминирование вещества над антивеществом в нашей Вселенной. Она никак не объясняет разнообразные закономерности, которые обнаружены в свойствах кварков и особенно нейтрино. Наконец, многие численные величины в ней выглядят противоестественными, и сама Стандартная модель никакого объяснения им не дает. Физики уверены, что Стандартная модель — это лишь осколок какой-то другой, всеобъемлющей и более фундаментальной, теории устройства нашего мира, которую ученые условно называют физика за пределами Стандартной модели или «Новая физика». Что это за теория — пока неизвестно, но именно с ней связываются большие надежды на поиск ответов на неудобные для Стандартной модели вопросы.

  Чтобы не создавалось неправильного впечатления, надо обязательно оговориться, что проблема — не в том, чтобы придумать хоть какую-то теорию. Таких теорий придуманы, наверное, сотни. Проблема в том, чтобы теория давала новые, нестандартные предсказания и чтобы эти предсказания подтверждались на опыте. А вот с этим пока сложности: ни один прямой эксперимент с элементарными частицами не обнаружил никакого достоверного отклонения от Стандартной модели. Так что Большой адронный коллайдер (он же LHC) — это не просто установка, которая сталкивает частицы и что-то там измеряет. Это тот инструмент, который должен помочь нам дотянуться до Новой физики, до нового пласта реальности, лежащего под Стандартной моделью. Первый маленький шаг в этом направлении сделан: открыт хиггсовский бозон и началось его изучение. Но это был подготовительный шаг, а настоящая задача коллайдера — достоверное обнаружение хоть какого-то отклонения от Стандартной модели — пока не решена.

Как ищут проявления суперсимметрии

  Поскольку теорий Новой физики много и предсказывают они разные явления, исследователи выполняют сотни различных анализов накопленных на LHC данных и ищут в них эти эффекты. Среди всех моделей особняком стоят теории, опирающиеся на суперсимметрию. Это слово обозначает глубокую, математически самосогласованную идею о том, что наш мир обладает симметрией нового типа, которая связывает между собой, говоря совсем условно, частицы материи и действующие между ними силы.

  Идея суперсимметрии проверяема в эксперименте, по крайней мере в принципе. Суперсимметричные теории предсказывают множество новых частиц, суперпартнеров обычных частиц. У кварков, глюонов, лептонов, гравитонов и всех других частиц есть суперпартнеры: скварки, глюино, слептоны, гравитино и т.д. — 

Top quark Standard - model particles Hypothetical SUSY particles Stop squark,Всё самое интересное,интересное, познавательное,,разное,The Brights,физика,наука

Проблема только в том, что эти новые частицы — тяжелые, и никто не может заранее сказать, насколько. Когда строился Большой адронный коллайдер, среди физиков царило воодушевление. Многие из них считали, что массы суперчастиц находятся в районе 1 ТэВ или даже меньше, и такие частицы начнут массово рождаться на LHC. Увы, первый сеанс работы коллайдера охладил этот пыл: многочисленные поиски прямых или косвенных проявлений суперсимметрии по-прежнему дают отрицательные результаты.

Сейчас, после двух недавних любопытных публикацией CMS и ATLAS, ситуация, возможно, начнет меняться. Но прежде чем рассказывать о них самих, стоит кратко обрисовать, как вообще ищут проявления суперсимметрии на коллайдере.

Сложность тут в том, что у суперсимметрии нет какого-то одного конкретного, железобетонного предсказания, проверяемого прямо сейчас. Имеется большое количество вариантов суперсимметричных теорий, а в них есть неизвестные численные параметры. В результате предсказания для коллайдера могут получиться самые разнообразные — и физики стараются, по возможности, охватить их все. Среди них выделяется главное направление поисков —

столкновение протонов Ж глюино / > ¿о скварк Л/ \> нейтралино кварки -> адроны,Всё самое интересное,интересное, познавательное,,разное,The Brights,физика,наука
рис.3

Считается, что вначале в столкновении протонов рождаются сильновзаимодействующие суперчастицы — скварки или глюино. Они тяжелые и распадаются на другие, те — распадаются дальше, и т.д. Так идет до тех пор, пока не появится легчайшая суперсимметричная частица (в зависимости от варианта теории, это может быть нейтралино, гравитино или другие суперчастицы). Главное, что она уже ни на что не распадается, а просто улетает прочь, не будучи даже пойманной детектором. Эта частица уносит большой поперечный импульс, который — в силу неуловимости частицы — не отслеживается детектором. Детектор регистрирует все обычные частицы, измеряет их импульсы и видит, что они не складываются в нуль, то есть заметная часть импульса «теряется». Такой дисбаланс в поперечном импульсе указывает на то, что в столкновении родилась какая-то неуловимая частица высокой энергии.

  Конечно, одного лишь дисбаланса поперечного импульса мало для открытия Новой физики. В Стандартной модели тоже есть частицы, не регистрируемые детектором, — нейтрино, — и они запросто могут породить похожую картину столкновений. Вдобавок, детекторы неидеальны, и иногда они ошибаются при измерении энергий и импульсов (особенно когда приходится мерять адронные струи, целые потоки адронов) или даже могут неправильно идентифицировать пролетевшую частицу. Поэтому в реальности физикам приходится тщательно сравнивать полученные данные с предсказаниями Стандартной модели и пытаться найти не просто какую-то статистику событий, а их превышение над фоном Стандартной модели. Так что каждый поиск, каждый анализ — это кропотливая работа десятков и сотен исследователей в течение месяцев или даже лет.

Новые результаты CMS и ATLAS

  После обстоятельного вступления перейдем наконец к новым результатам с коллайдера. Сейчас, в преддверии нового запуска LHC, экспериментальные группы «подчищают хвосты» — доделывают трудоемкие анализы на основе данных, набранных во время первых трех лет работы коллайдера. Регулярно появляются и статьи о тех или иных поисках суперсимметрии, но все они пока приводят к отрицательным результатам. Однако за последний месяц обе крупнейшие коллаборации, работающие на LHC, сообщили о наблюдении любопытных отклонений в похожих — но не идентичных! — конфигурациях частиц. Статья коллаборации CMS появилась в конце февраля, а работа ATLAS — в середине марта, буквально на днях [1, 2].

  В обеих работах физики изучали события следующего типа: наблюдаются как минимум две адронные струи, лептонная пара (электрон-позитрон или мюон-антимюон) и потерянный поперечный импульс. На рис. 3 показаны два примера процессов с рождением и распадом суперсимметричных частиц, которые могли бы порождать такие события. Конечно, существуют и обычные (фоновые) процессы, которые дают такой же сигнал. Например, в столкновении протонов может просто родиться Z-бозон, который распадется на лептонную пару, а уж адроны всегда рождаются в избытке. Если детектор неправильно сосчитает энергию адронных струй, вполне может появиться дисбаланс поперечного импульса. Однако в этом случае дисбаланс будет небольшим, порядка десятков ГэВ. Чтобы избавиться от него, физики отобрали только такие события, в которых дисбаланс составлял как минимум сотню ГэВ (в случае ATLAS — 225 ГэВ). Есть и другие источники фона, но все их физики аккуратно учли.

  Два типа сигналов, показанные на рисунке — 

частицы Стандартной модели кварки —> адронные струи ч ч лептоны стабильные легчайшие нейтралино глюино неитралино слептоны Р Р частицы-суперпартнеры частицы Стандартной модели кварки —> адронные струи У Ч г-бозон —> лептоны г 6 гравитино С z ч ч глюино неитралино

Отличаются поведением лептонной пары. На верхней картинке показано нерезонансное рождение лептонов, в котором они излучаются независимо друг от друга. В этом случае энергии двух лептонов не связаны друг с другом, а значит, инвариантная масса этой пары (mll) может быть самой разной, и большой, и маленькой. На нее имеется лишь ограничение сверху, поскольку эти лептоны получаются из распадов тяжелых частиц. С точки зрения эксперимента, характерный сигнал таких событий выглядит так: имеется широкое распределение по mll, которое вдруг обрывается выше некоторого значения. Именно этот «обрыв распределения» и искали физики.

  На нижней картинке на рисунке — 

частицы Стандартной модели кварки —> адронные струи ч ч лептоны стабильные легчайшие нейтралино глюино неитралино слептоны Р Р частицы-суперпартнеры частицы Стандартной модели кварки —> адронные струи У Ч г-бозон —> лептоны г 6 гравитино С z ч ч глюино неитралино

 — показан другой вариант — резонансное рождение лептонной пары. Здесь лептоны рождаются не сами по себе, а получаются в результате распада Z-бозона. Поэтому их энергии скоррелированы, а инвариантная масса пары близка к массе Z-бозона (91 ГэВ). Поэтому в поисках такого типа событий можно сфокусироваться на области от 81 до 101 ГэВ, а участок распределения вне ее, наоборот, использовать для оценки фона.

  Два коллектива — CMS и ATLAS — выполнили оба типа поисков, правда со слегка отличающимися критериями отбора. Но вот результаты у них получились разными. CMS сообщает, что в случае нерезонансного рождения на рисунке вверху — 

частицы Стандартной модели кварки —> адронные струи ч ч лептоны стабильные легчайшие нейтралино глюино неитралино слептоны Р Р частицы-суперпартнеры частицы Стандартной модели кварки —> адронные струи У Ч г-бозон —> лептоны г 6 гравитино С z ч ч глюино неитралино

 — в области mll от 20 до 70 ГэВ наблюдается некоторое превышение числа событий над фоном, с обрывом распределения при значении около 71 ГэВ. Статистическая значимость отклонения оценена в 2,4σ. Эффект, конечно, не слишком впечатляющий, но тем не менее заслуживает интереса, тем более что это был один из первых поисков суперсимметрии методом обрыва распределения. В случае резонансного рождения коллаборация CMS не видит никаких отклонений.

Результаты ATLAS получились прямо противоположными. Нерезонансный поиск ничего существенного не выявил, зато в резонансном рождении было найдено любопытное отклонение. На рисунке — 

Events / 2.5 GeV 14 12 10 8 6 n I I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | r —Data Standard Modal /£ = 8 TeV. 20.3 fb'1 I I Flavour Symmetric I I Other Backgrounds m(g)ji=(700.200)GeV_! m(g)n=(900.600)GeV ATLAS - SR-Z ee > <D CD in c\j c o >

 — показано распределение по инвариантной массе электронной или мюонной пары. Бросается в глаза то, насколько малый тут фон и насколько сильным оказался сигнал. В случае CMS всё выглядело иначе: был большой фон, и на нем физики разглядели небольшое превышение. Тут же в электрон-позитронном канале ожидалось примерно 4±2 события, а обнаружено — аж 16! В мюонном случае превышение заметно слабее, но тоже кое-что наблюдается. Невооруженному взгляду может показаться, что левый график на рисунке — 

Events / 2.5 GeV 14 12 10 8 6 n I I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | I I I | r —Data Standard Modal /£ = 8 TeV. 20.3 fb'1 I I Flavour Symmetric I I Other Backgrounds m(g)ji=(700.200)GeV_! m(g)n=(900.600)GeV ATLAS - SR-Z ee > <D CD in c\j c o >

 — прямо-таки кричит: открытие! Однако аккуратный анализ более сдержан: статистическая значимость отклонения в электронном канале (а также в объединенном лептонном) составляет 3σ.

Конечно, сейчас пока рано утверждать, что в коллайдере действительно было открыто явление, достоверно выходящее за рамки Стандартной модели. Отклонения порядка 3σ считаются указанием на существование, но никак не открытием. Такое отклонение вполне может оказаться статистической флуктуацией или неучтенной погрешностью детектора. В физике частиц встречались примеры, когда по прошествии некоторого времени рассасывались сигналы и с большей статистической значимостью. Настораживает также и то, что два детектора получили несогласующиеся результаты. Конечно, методики у них немножко разные, и никто не обещает, что отклонения в одном эксперименте обязательно подтвердятся в другом. Тем не менее после этого первого «захода» оба детектора наверняка будут уделять повышенное внимание этому процессу. Ну и, разумеется, у физиков появляется дополнительный повод с нетерпением ожидать результаты нового сеанса работы коллайдера LHC Run II, который за три года должен увеличить статистику почти на порядок.

Игорь Иванов

1. Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at sqrt(s) = 8 TeV. ArXiv:1502.06031 — http://arxiv.org/abs/1502.06031
2. Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s√=8 TeV pp collisions with the ATLAS detector. ArXiv:1503.03290 — http://arxiv.org/abs/1503.03290

Источник — http://elementy.ru/news/432428

Развернуть

The Brights психология ...Всё самое интересное 

Помогаем одному и не помогаем многим

“Неужели трагедия становится все более безразличной для нас по мере нарастания числа ее участников? Эта мысль удручает, и я заранее предупреждаю вас, что следующий ниже текст не предназначен для развлечения, — но, как и в случае со многими другими человеческими проблемами, я считаю важным разобраться в том, что на самом деле движет нашим поведением.

Всё самое интересное,интересное, познавательное,,разное,The Brights,психология
 Эффект определяемой жертвы

  Чтобы лучше понять, почему мы сильнее реагируем на страдания единственного человека, позвольте рассказать вам об эксперименте, проведенном Деборой Смолл (преподавателем университета штата Пенсильвания), Джорджем Ловенстайном и Полом Словичем (преподавателями университета штата Орегон). Деб, Джордж и Пол вручали участникам эксперимента по пять долларов за заполнение опросного листа. Получившим деньги экспериментаторы рассказывали о проблемах, связанных с нехваткой в мире продовольствия.

  Как вы, возможно, уже догадались, информация о дефиците продовольствия доводилась до различных людей по-разному. Одна группа, получившая название «статистическое условие», читала следующий текст:

  «Нехватка продовольствия в Малави привела к страданиям более 3 миллионов детей. Засуха в Замбии в 2000 году привела к 42%-ному падению объемов производства кукурузы. В результате, по некоторым оценкам, 3 миллиона жителей Замбии оказались перед угрозой голода. 4 миллиона ангольцев — треть населения страны — были вынуждены покинуть свои дома. Более 11 миллионов человек в Эфиопии нуждаются в немедленной продовольственной помощи».

  Затем участникам предоставлялась возможность пожертвовать часть заработанных пяти долларов в благотворительный фонд, занимавшийся оказанием продовольственной помощи. Прежде чем продолжить чтение, спросите себя: «Сколько бы я отдал денег, оказавшись на месте участника?»

  Вторая группа, которую исследователи назвали «определяемое Условие», получила статью о Рокии, бедной семилетней девочке из Мали, оказавшейся перед лицом голодной смерти. Участники могли посмотреть ее фотографию и прочитать следующее заявление (составленное по всем канонам прямой рассылки):

  «Ее жизнь могла бы измениться к лучшему в результате вашей финансовой помощи. С вашей помощью и помощью других жертвователей фонд Save the Children сможет помочь Рокии, ее семье и другим членам ее сообщества. Мы сможем накормить ее, дать ей образование, обеспечить медицинскую помощь и научить основам гигиены».

  Так же как и участники группы «статистическое условие», участники группы «определяемое условие» имели возможность пожертвовать часть только что заработанных ими пяти долларов. Спросите себя еще раз, сколько денег вы захотели бы пожертвовать, услышав историю Рокии. Отдали бы вы больше денег для того, чтобы помочь этой девочке, или для того, чтобы помочь справиться с общей проблемой голода в Африке?

  Если вы похожи на большинство участников эксперимента, то отдали бы в пользу Рокии примерно в два раза больше денег, чем на борьбу с голодом (в группе «статистическое условие» средний размер пожертвования составил 23% от заработка участников, однако в группе «определяемое условие» средний размер пожертвования был в два раза больше и составил около 48%). Это является наглядным примером того, что ученые в области социальных наук называют эффектом «определяемой жертвы» (the identifiable victim effect): видя изображение или узнав информацию о конкретном человеке, мы испытываем по отношению к нему более глубокие чувства, а затем отвечаем на этот импульс своими действиями и пожертвованиями. Однако когда информация не носит индивидуального характера, мы не испытываем столь же сильного сострадания и вследствие этого не приступаем к действиям.

  Эффект «определяемой жертвы» не прошел мимо поля зрения множества благотворительных фондов, таких как Save the Children и сотни других.

  Все они знают, что лучшим ключом к нашим кошелькам является сострадание и что примеры личных страданий — один из лучших способов разжечь наши эмоции (рассказ о человеке —> эмоции —> кошелек).

Всё самое интересное,интересное, познавательное,,разное,The Brights,психология
 Близость, яркость и «капля в море»

  Описанные выше эксперименты и истории показывают, что мы готовы тратить свои деньги, время и силы, чтобы помочь «определяемым жертвам», однако не делаем этого в отношении «статистических жертв», например сотен тысяч руандийцев. Какие же причины определяют подобное поведение? Как и в случае многих других сложных социальных проблем, здесь в игру вступает сразу несколько психологических сил. Но прежде чем мы поговорим о них более подробно, попробуйте выполнить следующий мысленный эксперимент:

  Представьте себе, что вы находитесь в Кембридже (штат Массачусетс) и собираетесь пройти собеседование на должность, о которой могли только мечтать. У вас остается еще час до интервью, поэтому вы решаете пройтись пешком от своей гостиницы, для того чтобы посмотреть на город и расслабиться. Переходя по мосту через реку Чарльз, вы слышите крик. В нескольких метрах от себя вы видите в воде девочку, которая, по всей видимости, тонет: она зовет на помощь и жадно хватает ртом воздух. Вы одеты в совершенно новый костюм, а некоторые детали вашего парадного облачения стоят чуть ли не тысячу долларов. Вы хороший пловец, но у вас нет времени для того, чтобы скинуть одежду, ведь девочка вот-вот утонет. Что вы сделаете? Скорее всего, вы без особых размышлений прыгнете в воду, чтобы ее спасти, и уничтожите тем самым и свой новый костюм, и надежды, связанные с собеседованием. Ваше решение прыгнуть, безусловно, характеризует вас как доброго и замечательного человека, но оно частично может быть вызвано тремя психологическими факторами.

  Первый фактор — это ваша короткая дистанция по отношению к жертве. Психологи называют этот фактор близостью. Она не означает близкого расстояния в физическом смысле. Речь скорее идет о чувстве родства: вы близки своим родственникам, социальной группе, а также другим людям, с которыми у вас есть сходные черты. Очевидно (и хорошо), что большинство трагедий мира не случаются рядом с нами с точки зрения физической или психологической близости. Мы лично не знакомы с большинством страдающих людей. Поэтому нам сложно испытывать по отношению к их боли столь же сильное сострадание, какое мы можем испытывать по отношению к родственнику или другу, попавшему в сложную ситуацию. Эффект близости является настолько мощным, что мы с гораздо большей вероятностью поделимся деньгами со своим соседом, потерявшим высокооплачиваемую работу, чем со множеством нуждающихся бездомных людей, живущих в соседнем городе. И еще менее вероятно, что мы поделимся деньгами с теми, кто потерял свой дом на расстоянии 8 тысяч километров от нас.

  Второй фактор носит название «яркость». Если я просто вам скажу, что порезался, вы не получите полной картины события и не почувствуете мою боль. Но если я опишу произошедшее со мной со слезами в голосе, расскажу, насколько глубока рана, какую я испытываю боль и сколько крови потерял, вы получите более яркую картину и начнете сочувствовать мне гораздо сильнее. Аналогичным образом, видя, как тонущая девочка изо всех сил бьется в холодной воде, и слыша ее крик, вы чувствуете необходимость срочно действовать.

  Противоположностью этому фактору является неопределенность. Если вам говорят, что кто-то тонет, но вы сами не видите тонущего и не слышите его крик, то ваши эмоциональные двигатели не включаются. Неопределенность чем-то напоминает взгляд на Землю из космоса. Вы можете видеть контуры континентов, голубые глубины океана и горные цепи, но не можете разглядеть ни дорожных пробок, ни загрязненных лесов, ни преступлений, ни войн. Издалека все выглядит мирным и милым, и мы не чувствуем потребности что-либо Менять.

  Что касается третьего фактора, то психологи называют его эффектом «капли в море». Он связан с вашей верой в свою способность лично и в одиночку помочь жертвам трагедии. Подумайте о какой-нибудь развивающейся стране, множество жителей которой умирают от загрязненной воды. Максимум того, что может в этой ситуации сделать каждый из нас, — поехать в эту страну и помочь ей в строительстве нормальной очистной системы. В условиях такой масштабной проблемы, а также с учетом того, что лично мы можем решить лишь небольшую ее часть, у каждого из нас возникает соблазн эмоционально закрыться и сказать себе: «А в чем, собственно, дело?»

  Чтобы оценить, насколько сильно вышеперечисленные факторы могут повлиять на ваше собственное поведение, задайте себе ряд вопросов. Что если бы девочка, которую вы спасли, жила не в этом городе, а в далекой стране, пострадавшей от цунами, а вы могли бы облегчить ее участь, сделав небольшой благотворительный взнос (значительно меньший, чем цена вашего костюма)? Были бы вы готовы столь же охотно помочь ей своими деньгами? А что если бы ситуация была не столь очевидной и непосредственная угроза жизни девочки отсутствовала? Давайте предположим, что она находилась бы в опасности вследствие эпидемии малярии в ее стране. Был бы ваш порыв помочь ей столь же сильным? А что если в ее стране есть множество других детей, находящихся перед прямой угрозой эпидемии диареи, СПИДа или лихорадки Эбола? Будете ли вы испытывать разочарование от своей личной неспособности решить эту проблему? Что произойдет с вашим желанием помочь?

  Если бы я был азартным человеком, то поспорил бы с вами, что ваше желание помочь многим детям, находящимся перед угрозой заболевания в далекой стране, будет куда более слабым, чем желание помочь родственнику, другу или соседу, умирающему от онкологического заболевания. (Чтобы вы не думали, что я вас укоряю, скажу, что сам веду себя точно так же.) Дело не в том, что вы якобы жестокосердны. Просто вы обычный человек и трагедию, пусть даже масштабную, но разразившуюся за много миль от вас, воспринимаете гораздо более отстранение». Когда мы не можем увидеть мелкие детали, то страдания других людей кажутся нам менее яркими, а следовательно, мы реже действуем в ответ на них.

  Если задуматься, то миллионы людей по всему миру тонут, страдают от голода, войн и болезней практически каждый день. Даже небольшая помощь с нашей стороны могла бы помочь им в улучшении ситуации, однако большинство из нас не предпринимают ничего именно «благодаря» комбинации близости, яркости и эффекта «капли в море».

  Томас Шеллинг, лауреат Нобелевской премии в области экономики, отлично описал разницу между определяемой и статистической жизнью:

  «Представьте себе, что шестилетней девочке с каштановыми волосами до Рождества нужно собрать несколько тысяч долларов на операцию, которая поможет спасти ей жизнь, — почта моментально окажется перегруженной пожертвованиями. Теперь представим себе людей, узнающих о том, что после отмены налога с продаж больница в Массачусетсе приходит в упадок и это приведет к значительному росту смертности, — мало кто проронит хоть слезинку или потянется за чековой книжкой».

  Эти результаты показались мне крайне удручающими, но это было еще не все! У первого эксперимента, проведенного Деборой, Джорджем и Полом, в котором был выявлен эффект «определяемой жертвы» (вследствие которого участники были готовы дать в пользу Рокии в два раза больше денег, чем на решение глобальной проблемы), имелось и еще одно условие. В рамках этого условия участники, по отношению к которым не проводилась настройка, одновременно получали информацию как о Рокии, так и о проблеме нехватки продовольствия в регионе.

  Теперь попытайтесь догадаться, сколько денег пожертвовали участники в этом случае. Столько же, сколько участники, знавшие только о Рокии? Или так же мало, как участники группы, знавшие лишь о статистических цифрах глобальной проблемы? Или размер их пожертвований был где-то посередине? С учетом печальной тональности этой главы вы уже можете догадаться о результатах. Участники, находившиеся в группе «смешанного условия», были готовы поделиться 29% своего дохода — это немного выше, чем у 23% участников в «статистическом условии», но гораздо меньше, чем 48% пожертвований участников, знавших о конкретном человеке, страдавшем от проблемы. Проще говоря, участникам оказалось сложно одновременно думать о цифрах и испытывать эмоции.

  Итак, собранные воедино результаты эксперимента демонстрируют нам довольно печальную картину. Когда нас призывают подумать об одном человеке, мы склонны предпринимать какие-то действия; когда же дело касается многих людей — мы остаемся бесстрастными. Холодный расчет не заставляет нас сосредоточиться на решении больших проблем — напротив, он подавляет наше сострадание. Таким образом, рациональное мышление в стиле Спока, которое, казалось бы, должно способствовать принятию более взвешенных и разумных решений, делает нас менее альтруистичными и заботливыми. Как писал Альберт Сент-Дьёрди, известный врач и исследователь: «Я бываю глубоко тронут видом страдающего человека и готов рисковать своей жизнью ради него. Но я могу достаточно спокойно говорить о возможных эпидемиях в крупных городах, способных уничтожить сотни тысяч человек. Я просто не способен умножить страдания одного человека на 100 миллионов»”.

Всё самое интересное,интересное, познавательное,,разное,The Brights,психология

Ариели Д. «Позитивная иррациональность». М.: Издательство «Манн, Иванов и Фербер», 2010. Стр. 226-236.
Развернуть

антропология The Brights ...Всё самое интересное 

Бремя мозга

Всё самое интересное,интересное, познавательное,,разное,антропология,The Brights

Рисунок: Константин Батынков


Многие нынешние проблемы человечества — следствия нечаянного и излишне быстрого биологического успеха. На протяжении всей своей эволюции гоминиды оставались лишь промежуточным звеном пищевой цепочки. Цепь случайных мутаций и стечение обстоятельств позволили людям резко нарастить выгоды, извлекаемые из нашего гипертрофированного мозга. В результате мы стремительно взлетели на вершину пищевой цепочки, раздвигая границы обитания, уничтожая конкурентов и себе подобных. Но наличие того, что мы называем разумом, еще не гарантирует эффективного его использования. Чтобы понять, что мы есть на самом деле, стоит отбросить привычное высокомерие «венца природы» и приглядеться к тому, как появился наш разум, чем мы отличаемся от других животных и особей своего вида. Об этом нам рассказывает доцент кафедры антропологии биологического факультета МГУ Станислав Дробышевский — расовед и специалист по эволюции мозга человека.


— Какие факторы привели кгипертрофии мозга у людей?

— Первые приматы обзавелись более крупным мозгом, чем у сопоставимых с ними грызунов и насекомоядных, потому что жили на деревьях. Это достаточно сложный процесс: надо очень быстро соображать, чтобы не упасть с дерева. При этом, например, белки, бегающие по горизонтальным ветвям и вертикальным стволам, существуют в двумерном мире. А приматы, прыгающие между тонкими ветками, — в трехмерном. И переход в дополнительное измерение потребовал серьезных способностей: стереоскопичности зрения и развития структур мозга, ответственных за трехмерное восприятие объектов и оценку расстояния.

Немалую роль сыграла фруктоядность. Богатая сахарами пища обеспечивает много энергии из небольшого количества еды. Значительно способствовали развитию мозга и особенности размножения: детенышей мало, за счет этого они рождаются с большой головой, а период жизни долгий — за это время можно успеть заполнить ее чем-нибудь полезным. Важна также социальность; выстраивание отношений с себе подобными — сложный процесс, развивающий мозг.

  Ближе к современности — от семи до шести миллионов лет назад — наши предки встали на ноги. Уже само по себе поднятие в вертикальное положение дало возможность прироста головного мозга. По биомеханическим причинам на вертикально расположенном позвоночнике можно удержать большую массу, чем на наклонном. Но куда больший прирост мозга прямохождение дало за счет высвобождения рук, которые принесли дополнительную чувствительность и манипуляторную активность, обеспечиваемые увеличением мозга.

  Около двух с половиной — трех миллионов лет назад в связи с изменениями климата наши предки вышли из джунглей в саванны и стали налегать на мясную пищу. Она более калорийна, кроме того, у растительных клеток прочные стенки, для их разжевывания необходимо иметь серьезный аппарат: челюсти, зубы, мышцы. Поэтому у всех растительноядных челюсти очень большие, а мозги очень маленькие — в одной голове все сразу не помещается.

  С переходом на мясо у наших предков жевательный аппарат смог уменьшиться. Еще у австралопитеков были большие зубы и челюсти, огромные жевательные мышцы, которые сходятся по центральной линии черепа на сегетальном гребне, и не шибко крупные мозги. Но жевательный аппарат стал быстро уменьшаться: около двух миллионов лет назад гребни для прикрепления жевательной мускулатуры исчезают вообще. У современного человека остались только тоненькие височные линии. И нужно помнить, что плотность кости в два раза больше, чем плотность мозга. То есть при исчезновении одного кубического сантиметра черепа и зубов можно прибавить два кубических сантиметра мозга при постоянстве несущей способности позвоночника и массы головы.

  При этом добывание животной пищи развивает интеллект. Трава растет спокойно и особо не сопротивляется. А мясо не хочет, чтобы его съели. Кроме того, за него сильнее конкуренция: гиены, шакалы, львы, леопарды. Поэтому у хищников интеллект всегда выше, чем у растительноядных. И отказ от вегетарианства дал бурный прирост мозга, начавшийся около двух — двух с половиной миллионов лет назад и продолжавшийся почти до современности.


— Homo sapiens не единственный вид, пытавшийся поумнеть?

— Энцефализация характерна для большинства групп животных. Уже среди динозавров были свои «интеллектуалы»: у терапод скорость увеличения мозга была такой же, как у австралопитеков. Но динозаврам не повезло — они не успели отрастить мозг до катастроф, их уничтоживших.

  С теми или иными ограничениями сталкивались и другие виды. Например, птицы потенциально весьма интеллектуальны. Вороны дают результаты интеллекта на уровне маленьких мартышек. Но им нужно летать, а делать это с большой головой неудобно, так что им пришлось избавиться даже от зубов, чтобы уменьшить вес. А наземные птицы — пингвины в Антарктиде или птица моа в Новой Зеландии — живут в условиях отсутствия хищников, что лишает их стимула к развитию интеллекта. Единственное исключение — страус, возможно, он и поумнеет.

  У сугубо растительноядных специализация уходит в огромные челюсти и зубы и интеллект тут же падает. У четвероногих тенреков, прыгунчиков, копытных, грызунов нехватательная конечность. У хищников интеллект выше, а некоторые из них — те же львы — социальны, но они специализированы к охоте. А для формирования разумности необходимо разнообразие поведения. Шакалы более разнообразны в пище, но ведут исключительно наземный образ жизни.

  У небольших дельфинов есть многие предпосылки: маленькое количество детенышей, долгое воспитание, большой мозг — почти как у человека, социальность. Но ловля рыбы не требует больших усилий мозга.

  Многие предпосылки разумности есть у сумчатых. Но у них примитивное деторождение: из-за отсутствия плаценты их детеныши рождаются практически на стадии эмбрионов, с очень маленьким мозгом, и не слишком долго живут. У них недостаточно времени для научения. Медведи и еноты во многом похожи на приматов: всеядны, лазают по деревьям, имеют цепкие лапы. Но их когтистые лапы не совсем то, что хватательная кисть, и у них нет социальности.


— А кто наиболее близко подобрался квыполнению всех условий формированияразумности?

— Единственный пример, когда почти все совпадает: древесность, практически хватательная конечность и социальность — это носухи, южноамериканские еноты. Они идеальные кандидаты на разумность. Но проблема в том, что они уже двадцать миллионов лет практически не меняются. Что-то не дает им стать разумными. Возможно, слишком сильное развитие обоняния.

  Передняя часть мозга у млекопитающих изначально отведена под обоняние. И у подавляющего большинства из них это ведущее чувство, за которое отвечает огромная часть мозга. А у наших предков в связи с фруктоядностью обонятельные центры сильно редуцировались еще в палеоцене, около шестидесяти миллионов лет назад. Вместо них хорошо развились зрительные зоны мозга, что обеспечило нам отличное зрение, гораздо лучшее, чем у других млекопитающих, и дало многие преимущества. Например, с помощью цветного зрения в зеленой листве легче находить яркие фрукты и насекомых, нежели используя обоняние.

  Кроме того, за счет уменьшения обонятельных зон мозга возникло так называемое заглазничное сужение — за глазами череп стал уже, это характерная черта приматов. И туда в значительной степени переместилась жевательная мускулатура, высвободив заднюю часть черепа и дав возможность роста задней части мозга.


— Приматы были вынуждены поумнеть, поскольку не имели четкойспециализации — ничего толком не умели делать?

— Это не совсем так: специализация человека — его разумность. Это очень узкая и жесткая специализация, которая нашла отражение и в анатомии. У нас пусть примитивная, но очень специализированная кисть: подобного строения запястного и пястного суставов, фаланг, положения большого пальца больше нет ни у кого. В значительной степени редуцирована зубная система. Специализированы череп и позвоночник с его изгибами и проблемами. Строение стопы у человека очень специфично: продольно-поперечные своды, увеличение большого пальца и мизинца, уменьшение остальных. Хотя мизинец — сам пальчик — маленький, но пятая плюсневая кость мощнее, чем вторая, третья и четвертая. Наше эволюционное будущее, скорее всего, — превращение в парнокопытных. Потому что опираться на одну поверхность энергетически выгоднее, чем на пять, и у всех видов, адаптировавшихся к наземному образу жизни, пальцев становится меньше. Но человек пока этот эволюционный тренд обогнал по-своему, изобретя искусственные копыта — обувь.

  И наконец, наша культура — очень мощная специализация. Чтобы человек стал человеком, должно быть много других людей с кучей всяких знаний, которые запихнут их ребенку в голову. А без них человек сам по себе беспомощен. Примером тому дети-маугли.


— Кто-то еще из приматов пытался отрастить мозг?

— Первые павианы эволюционировали в сторону увеличения головного мозга так же быстро, как и наши предки. Но они выбрали путь усиления вертикали власти — жесткой иерархии в группе, а ее легче всего поддерживать агрессией. Это полностью остановило развитие интеллекта.

  Другой пример — ореопитек, вид обезьян, живших на заболоченном острове рядом с Италией. Они практически перешли к прямохождению, что освобождало руки, и, как и наши предки, имели маленькие челюсти, что давало возможность развития мозга. Но семь миллионов лет назад на Земле стало холоднее и суше. Наших предков это заставило выйти из джунглей в саванны и дало толчок к их развитию. А для избалованных безопасным существованием ореопитеков это стало концом: болота подсохли, остров соединился с материком, и пришедшие оттуда хищники съели их.

  В Юго-Восточной Азии жили гигантопитеки — самые большие обезьяны всех времен, достигавшие трехметрового роста. Их мозг по размеру был почти как у современного человека. Однако они пошли по пути специализации к питанию растительной пищей и наращиванию челюстей. В результате порядка ста тысяч лет назад они исчезли, и не исключено, что не без прямого участия наших предков — древние люди, заселив Южную Азию, не могли не оценить гигантопитеков как добычу.

  Еще один крупный разумный вид — массивные австралопитеки. Два с половиной — миллион лет назад их руки были лучше приспособлены для изготовления орудий, чем у наших предков, которые жили тогда же и там же. Но выжили именно последние.

Приматам повезло в целом, но среди всего рода Homo sapiens оказался самым удачливым. Неандертальцев накрыли вулканы и оледенения, флоресиенсисы и жители Явы увлеклись жизнью в райских условиях. Гигантопитеки и массивные австралопитеки пали жертвой вегетарианства.

  Однако уменьшение мозга у современного человека последние двадцать пять тысяч лет заставляет насторожиться и нас. Возможно, не все так светло в нашем будущем. Мозг верхнепалеолитических людей и даже неандертальцев в среднем был гораздо больше современного. Средний мозг поздних неандертальцев-мужчин был больше 1500 кубических сантиметров. Для современных же мужчин всех рас средний размер — примерно 1425 кубических сантиметров.

Всё самое интересное,интересное, познавательное,,разное,антропология,The Brights

Paranthropus boisei еще не решил, жевать или думать

Рисунок: Роман Евсеев


— Человечество глупеет?

— Это наиболее вероятная версия. У нас общество доминирования группового интеллекта, то есть каждый отдельно взятый человек не очень умен. Мне лично не нужно знать, как добыть огонь из ничего, сделать копье или охотиться на бобров. Мне достаточно знать, как преподавать антропологию, поэтому большой мозг мне вообще ни к чему.

  Охотник-собиратель должен был уметь все с нуля и полностью: сделать все орудия труда, добыть огонь, построить жилище, выследить добычу, убить ее и приготовить. При этом он должен был быть носителем и всех социальных знаний: легенд и преданий, умения выстраивать отношения с сородичами, изготовления украшений. У него не было ни специалистов, ни энциклопедий, поэтому ему требовался более мощный мозг. Мы же очень специализированы, и каждый из нас владеет лишь малыми фрагментами культуры.

  Кроме того, древнему человеку приходилось до многого доходить своим умом. Продолжительность жизни была мала, поэтому умудренных опытом стариков, да еще с педагогическим даром было катастрофически мало.

Современный человек берет нусом — коллективным разумом. У наших предков нус еще был слабоват, поэтому каждому приходилось работать своими мозгами.


— То есть наш мозг уменьшается, поскольку обеспечивать своевыживание в джунглях более сложная задача, чем тратитьсоциальное пособие в ближайшем супермаркете?

— Да. Нам большой мозг сейчас не нужен, а это очень энергоемкий орган. Не зря палеолитические люди имели мощное телосложение. Им надо было усиленно кормить свой большой мозг, благо мамонтов еще хватало. С неолита пошел естественный отбор на уменьшение размера мозга — на углеводной диете земледельцев выигрывали индивиды с меньшими габаритами, но с повышенной плодовитостью. У скотоводов была более калорийная пища, поэтому рекорд размеров мозга сейчас принадлежит монголам, бурятам и казахам.


— Мозг деградирует только у современных людей?

— Были и другие примеры интеллектуального регресса. Например, флоресиенсисы — так называемые хоббиты с острова Флорес в Индонезии. Первоначально, около миллиона лет назад, туда заселились питекантропы, имевшие мозг весом 800–1000 граммов. Но эволюция в изоляции, в условиях маленького острова, привела к уменьшению размеров мозга: 12 тысяч лет назад он весил уже 400 граммов, как у шимпанзе. При этом упрощения культуры не произошло: удивительно, что столь маленький мозг смог обеспечивать изготовление достаточно сложных орудий.


— Насколько быстро приматы создавали материальную культуру?

— Первые каменные орудия появились лишь 2,7 миллиона лет назад. Причем происходило это независимо несколько раз: у австралопитеков гари, в двух линиях массивных австралопитеков и в линии Homo. Но и в самой линии Homo несколько раз возникали альтернативные человечества со своей культурой. Всем известен пример неандертальцев Европы. Но были и люди на Яве, которые, живя в крайне специфических условиях и полной изоляции, сумели сформировать собственную культуру.

  Всего-навсего через миллион лет после изобретения каменных орудий появляется жилище. Приход в зоны умеренного климата вынуждал людей в поисках защиты от холода заселять гроты и пещеры. Ашельская культура, существовавшая 1,76 миллиона — 150 тысяч лет назад, была относительно статична: на протяжении более чем миллиона лет она мало изменялась, особенно архаичной она оставалась в Азии и в окраинных районах Европы. Это можно считать свидетельством еще не полной разумности архантропов. Наибольшими темпами развивались культуры Африки. Примерно полтора миллиона лет самым древним следам использования огня в Восточной Африке. В Европе древнейшие следы (пятьсот тысяч лет назад) использования огня обнаружены во Франции.

  Древнейший пример захоронения — кости людей, расчлененных и брошенных в шахтоподобную пещеру Сима де лос Уэсос в Испании около трехсот двадцати пяти тысяч лет назад. Туда же бросали кости хищников: медведей, пантер, лис; но ни одной кости травоядных. То есть люди как-то ассоциировали себя с хищниками. Более приближенные к современным варианты погребения появились лишь около ста тысяч лет назад, причем не у наших предков, а у неандертальцев.

  А у кроманьонцев — наших предков — появляются различные вариации, например по нескольку тел, хитро сложенных в одной яме. А около сорока тысяч лет назад начали класть в могилы различные предметы: копья, жезлы начальников, произведения искусства, посыпать охрой — это можно считать свидетельством появления веры в загробную жизнь, для которой умершим давали с собой полезный инвентарь.


— Можно ли сказать, когда у человека появилось абстрактноемышление, например, по появлению символического искусства?

— Первые следы символического искусства вообще восходят к австралопитекам. Самый ранний артефакт найден в Макапансгате — в пещере Южной Африки. Это красная овальная галька, которую выбоины естественного происхождения сделали похожей на рожицу. Причем ближайшее ее естественное залегание находится в тридцати двух километрах оттуда. То есть три миллиона лет назад кто-то тащил тридцать два километра эту гальку только потому, что она ему показалась прикольной. Около трехсот-четырехсот тысяч лет назад появились первые украшенные насечками кости. А сто тысяч лет назад — первые украшения из просверленных ракушек. Потом был всплеск искусства в Южной Африке, порядка восьмидесяти тысяч лет назад: появляются куски охры с орнаментом в виде крестиков и полосочек — своеобразный орнамент. Первым картинкам шестьдесят две тысячи лет, это еще до сапиенсов. А с их появлением, сорок тысяч лет назад, культура расцвела по полной: наскальная живопись, статуэтки, резьба по кости, музыкальные инструменты.


— Когда возникли расы?

— Они существовали практически всегда. Раса — это группа популяций, обладающих комплексом сходных биологических наследуемых признаков, возникшая на одной территории и имеющая единую историю. Да, в нашей истории было бутылочное горлышко — резкое снижение численности до малой группы особей, это было восемьдесят тысяч лет назад. Но уже через сорок тысяч лет многочисленные сапиенсы жили на разных территориях, и иногда они отличались друг от друга больше, чем современные люди, — тогдашние расы были более дифференцированы, чем современные. Современные комплексы больших рас сложились в конце верхнего палеолита и мезолита, тогда как расы меньшего порядка — только в неолите, бронзе и даже в начале железного века.

  Расы продолжают возникать и сейчас. В Индии специфическая культура привела к появлению массы расовых вариантов вследствие одной только кастовой изоляции. В отсутствие географических препятствий и даже в пределах одного населенного пункта искусственно выведенные расы существуют тысячи лет практически в полной изоляции.


— Существует ли единая классификация рас?

— Их множество. На мой взгляд, идеальный вариант классификации был предложен российским антропологом Георгием Дебецем в 1958 году. Он сумел в одной схеме учесть и разделение, и смешение между различными группами. Сейчас к ней можно добавить еще отдельные ветви, смешения и проставить датировки. Но принципиально она не меняется.


— Формирование рас происходит по тем же законам, что иформирование новых видов?

— Расовые признаки изначально возникали как адаптация к климатическим и иным природным условиям. Например, узкий разрез глаз монголоидов, бушменов и туарегов предохраняет глазное яблоко от пыли, ветра и слишком яркого солнца на открытых пространствах. При этом глаз монголоидов отличается существенно большим количеством подкожной клетчатки, предназначенной для сохранения тепла. Более экзотическим примером расовых адаптаций является стеатопигия — огромные отложения жира на ягодицах у бушменов, готтентотов и андаманцев. Это запас питательных веществ на случай их резкого недостатка. Благодаря скульптурам верхнего палеолита мы знаем, что стеатопигия была обычным явлением в Европе двадцать пять — двадцать тысяч лет назад.

  Расовые признаки имеют еще и возрастную изменчивость. Например, многие европеоидные дети имеют эпикантус — складку верхнего века во внутреннем углу глаза, характерную для монголоидов и исчезающую по мере взросления у европеоидов. Негры и другие экваториалы рождаются с очень светлой кожей, а усиление пигментации происходит позже. Аборигены Центральной Австралии в детстве часто имеют светлые волосы, а взрослые почти всегда черноволосы. Дети новокаледонских папуасов от года до полутора лет имеют прямые волосы, у взрослых они курчавые.

На расовые признаки влияет естественный и половой отбор, генетико-автоматические процессы, случайно меняющие частоты генов и эффекты «основателя» и «бутылочного горлышка». Современное распространение расовых признаков часто сильнее отражает не биологические явления, а исторические процессы.

— В исследовании наших предков всегда связывается степеньразумности с объемом мозга. А так ли жестко интеллект связан сразмером мозга?

— Связан, но не жестко. Чем больше объем мозга, тем, конечно, лучше. Но лишь потенциально. Интеллект связан не с размером как таковым и даже не с числом нейронов, а с количеством связей между ними. Он в некоторой степени обусловлено генетически. Но зависит и от условий жизни. Если человек живет в насыщенной среде, то и связей между нейронами образуется много. А если у человека даже три килограмма мозгов, но он сидит при этом в темной комнате без всяких связей с внешним миром, то у него не будет стимулов для развития интеллекта. Примером тому дети-маугли: если критический момент — первые два года жизни — пропущен, то человек, какие бы у него ни были размеры мозга, уже не овладеет ни речью, ни полноценной трудовой деятельностью.

  В некоторых исследованиях находят небольшие отличия размеров мозга великих деятелей в большую сторону от среднего по популяции. Это связано с тем, что среди знаменитых поэтов, писателей, политиков преобладают мужчины, у которых размер мозга больше, чем у женщин, поскольку объем мозга всегда коррелирует с размером тела. Вторая причина в том, что в основном расчеты делаются по североевропейским великим деятелям. На севере крупные размеры тела, и соответственно, размер мозга тоже в среднем достаточно большой. Если бы в эти исследования включили египтян или итальянцев, то среднее было бы то же, что и по популяции.


— Чем севернее живет народ, тем больше объем мозга?

— Размер мозга связан коррелятивно с размерами тела. И есть правило Бергмана: чем ближе к полюсам, тем крупнее размеры тела у животных. Потому что, чем больше тело, тем дольше оно остывает. У человека это правило в целом выполняется. Например, сравните норвежцев с итальянцами. У сибирских народов размеры не так четко коррелируют, но чем северней, тем форма тела будет ближе к шару: широкие плечи, мощная грудная клетка, короткие конечности и круглая голова.

Но для человечества в целом это не всегда выполняется. Самый крупный размер мозга у монголов, бурятов, казахов. Хотя это не самые северные люди. Более того, размеры мозга серьезно меняются во времени. Например, у современных австралийских аборигенов размер мозга один из самых маленьких на планете. Но у их предков еще восемь тысяч лет назад мозг был больше, чем у современных европейцев. Быстрота эволюции определяется тем, что австралийские аборигены живут маленькими группами. В период от двенадцати до шести-восьми тысяч лет назад количество стоянок резко увеличивается. Видимо, резкие изменения климата вызвали рост количества людей. Возможно, именно поэтому позже возник дефицит пищи и пошел быстрый отбор на уменьшение размеров мозга. При этом уровень культуры у них практически не поменялся.


— Насколько различается интеллект у различных народов?

— Сравнение интеллекта у различных культур — задача сомнительная. Ведь какие-нибудь бушмены в Калахари явно ориентированы на решение не таких, как у нас, жизненных задач. И набрав в непонятном им картиночном тесте IQ пятьдесят баллов, они потом еще долго смеются над глупыми европейцами, не способными даже добыть себе еду на охоте.        


Источник: http://expert.ru/expert/2013/37/bremya-mozga/


P.S. Хотелось бы отметить сразу два пункта:

1) Сравнивать объем и вес мозга неандертальца,кроманьонца и современного человека несколько неадекватно из-за разной упаковки мозга.Я говорю об извилинах и их друзьях,которые увеличивают площадь поверхности в разы,что дает возможность не наращивать массу/объем мозга и экономить энергию с тем же результатом.

2) Как справедливо заметил один комментатор(комментарий можно увидеть в конце источника),вес мозга так же зависит от количества синапсов в мозгу и если его не загружать большим объемом и-ии,то и весить он будет меньше.


Из чего хотелось бы сделать вывод: Дискуссия,вполне вероятна,была подведена к теме деградации мозга человека искусственно через некорректно заданные вопросы или искажение слов С.В. Дробышевского.


В комментариях можете высказать свое мнение по данной теме вопроса,полить говном источник и многие другие вещи,для которых предназначено комментирование.


Деградирует ли человек?
Да
8 (72.7%)
Нет
3 (27.3%)
Развернуть

#Клуб аметистов Я - робот Самоорганизация макромолекул The Brights ...Всё самое интересное 

Зарождение деятельности

Всё самое интересное,интересное, познавательное,,разное,Клуб аметистов,клуб атеистов,Я - робот,Самоорганизация макромолекул,The Brights

“У песчинки нет психики; песчинка слишком проста. Еще более простые, атом углерода или молекула воды также не обладают психикой. В этом вопросе я не ожидаю каких-либо серьезных разногласий. Но как насчет более крупных молекул? Вирус представляет собой огромную одиночную молекулу, макромолекулу, состоящую из сотен тысяч или даже миллионов частей — все зависит от того, что мы принимаем за ее части. Очевидно, что эти части взаимодействуют на атомарном уровне чисто автоматически, но это приводит к совершенно удивительным последствиям. В свете нашего исследования главным среди них является репликация. Некоторые макромолекулы обладают изумительной способностью: находясь в соответствующей среде, они автоматически создают и затем испускают точные — или почти точные — копии самих себя. К таким макромолекулам относятся ДНК и ее предок, РНК; они образуют основу всей жизни на нашей планете и, следовательно, историческую предпосылку всех видов психики по крайней мере, тех, что существуют на нашей планете. Приблизительно за миллиард лет до появления на земле простых одноклеточных организмов на ней уже были самореплицирующие макромолекулы, беспрерывно мутирующие, растущие, даже «восстанавливающие» себя, становящиеся лучше и лучше — и реплицирующие себя снова и снова.

Эта способность колоссальной важности все еще недоступна любому существующему роботу. Означает ли это, что такие макромолекулы обладают психикой, подобной нашей? Конечно, нет. Они далее не являются живыми; с точки зрения химии это просто огромные кристаллы. Эти гигантские молекулы представляют собой крошечные машины — образцы макромолекулярной нанотехнологии. В сущности, они являются природными роботами. Принципиальная возможность создания самореплицирующего робота была математически доказана Джоном фон Нейманом, одним из изобретателей компьютера. В своем удивительном проекте неживого саморепликатора он предугадал многие детали конструкции и строения РНК и ДНК.

Благодаря микроскопу в молекулярной биологии мы становимся свидетелями зарождения деятельности у первых макромолекул, достаточно сложных, чтобы совершать действия, a не просто испытывать воздействия. Их деятельность — это еще не полноценная деятельность наподобие нашей. Они не знают, что делают. Мы же, напротив, зачастую в полной мере знаем, что мы делаем. В лучшем — и худшем — случае мы, агенты-люди, совершаем намеренные действия после того, как сознательно взвесим все «за» и «против». Макромолекулярная деятельность отличается от нашей; есть разумные основания для того, что делают макромолекулы, но макромолекулам они неизвестны. Тем не менее, их вид деятельности является единственно возможной почвой, на которой могли взойти семена нашей деятельности.

Есть что-то чуждое и смутно отталкивающее в той квази-деятельности, которую мы обнаруживаем на данном уровне, — вся эта сутолока и суматоха направлена к некоторой цели и при этом осуществляется «без царя в голове». Молекулы-машины выполняют свои поразительные трюки, очевидно, превосходно спланированные, но не менее очевидно и то, что они не осознают совершаемого. Рассмотрим описание действий РНК-содержащего бактериофага — способного к реплицикации вируса, современного потомка первых самореплицирующих макромолекул:

«Во-первых, вирусу нужен материал для хранения и защиты своей генетической информации. Во-вторых, ему нужно каким-то образом вводить свою информацию в тело клетки-хозяина. В-третьих, ему необходим особый механизм репликации его информации в присутствии значительного преобладающего РНК клетки-хозяина. Наконец, он должен позаботиться о количественном росте своей информации, и результатом этого процесса обычно является разрушение клетки-хозяина... Вирус позволяет клетке даже продолжать свою репликацию; единственным его вкладом в этот процесс является один белковый фактор, приспособленный специально к РНК вируса. Этот фермент не активизируется до тех пор, пока РНК вируса не предъявит некоторый "пароль". Когда фермент обнаруживает пароль, он чрезвычайно эффективно репродуцирует РНК вируса, игнорируя гораздо большее количество молекул РНК клетки-хозяина. Как следствие, клетка вскоре заполняется РНК вируса. Эта РНК упакована в белке вирусной оболочки, который также синтезируется в огромных количествах, и в итоге клетка разрывается и высвобождает множество частиц-потомков вируса. Вся эта программа выполняется автоматически, будучи отрепетированной до мельчайших подробностей». (Eigen, 1992, p. 40)

Автор, молекулярный биолог Манфред Эйген, использует богатую «деятельностную» лексику: для репродуцирования вирус должен «позаботиться» о количественном росте своей информации и для достижения этой цели он создает фермент, который «обнаруживает» пароль и «игнорирует» остальные молекулы. Несомненно, это поэтическая вольность; эти слова с натяжкой применимы в данном случае. Но как трудно противиться такому их употреблению! Эти слова привлекают внимание к наиболее поразительной особенности изучаемых явлений: систематичности поведения этих макромолекул. Их системы управления не просто эффективно функционируют, они проявляют адекватную чувствительность к изменениям, приспособляемость, изобретательность и умение лавировать. Они могут «обманываться», но только чем-то новым, что нерегулярно встречалось их предкам.

Эти безличные, неспособные мыслить, роботоподобные, действующие автоматически крошечные машины-молекулы образуют первооснову всей деятельности, а, следовательно, всех значений и сознания в мире. Редко случается, чтобы такой надежный и бесспорный научный факт имел столь мощные последствия, которые определили бы все последующие дискуссии о таком спорном и таинственном предмете, как психика, поэтому давайте сделаем паузу и напомним себе эти последствия.

Больше нет серьезных оснований сомневаться в том, что мы — прямые потомки этих самореплицирующих роботов. Мы млекопитающие, а все млекопитающие произошли от рептилий, предками которых были рыбы; предками же рыб были морские создания, довольно похожие на червей, которые в свою очередь произошли несколько сотен миллионов лет назад от более простых многоклеточных созданий, а те произошли от одноклеточных созданий, произошедших около трех миллиардов лет назад от самореплицирующих макромолекул. Есть только одно генеалогическое древо, на котором можно найти всех живых существ, когда-либо живших на нашей планете, — включая не только животных, но также растения, водоросли и бактерии. Вы имеете общего предка с каждым шимпанзе, каждым червем, каждой былинкой, каждым красным деревом. Значит, в числе наших предков были и макромолекулы.

Скажем яснее: ваша пра-пра- ... бабушка была роботом! Вы не только произошли от подобных макромолекулярных роботов, но вы и состоите из них: к ним относятся ваши молекулы гемоглобина, антитела, нейроны, механизмы вестибулоокулярного рефлекса, т.е. на каждом уровне анализа, от молекулярного и выше, ваше тело (включая, конечно, и ваш мозг) состоит из машин, которые безмолвно выполняют поразительную, точно спланированную работу.

Возможно, у нас вызвала содрогание научная картина того, как деловито и механически выполняют свои разрушительные планы вирусы и бактерии — эти ужасные маленькие автоматы, совершающие свои преступления. Но не следует думать, что мы можем успокоить себя тем, будто они — чуждые нам захватчики, очень непохожие на более родные нам ткани, из которых состоим мы. Мы состоим из точно таких же автоматов, как и те, что вторгаются в нас; никакой особый ореол человечности не окружает ваши антитела, в отличие от антигенов, с которыми они борются. Просто ваши антитела принадлежат к «клубу», который есть вы сами, поэтому они сражаются на вашей стороне. Миллиарды нейронов, вместе составляющих ваш мозг, представляют собой клетки, т.е. тот же тип биологических сущностей, к которому относятся микробы, вызывающие инфекцию, и дрожжевые клетки, своим размножением заставляющие бродить пиво или подниматься хлебное тесто.

Каждая клетка — это крошечный агент, который может выполнять ограниченный набор заданий, и она действует почти так же механически, как вирус. Но, может быть, если достаточное количество этих бессловесных гомункулов — маленьких человечков — собрать вместе, то результатом будет по-настоящему сознающий человек, наделенный подлинной психикой? Согласно современной науке другого способа получить настоящего человека нет. Разумеется, из того факта, что мы произошли от роботов, не следует, что мы сами роботы. В конце концов, мы являемся также прямыми потомками рыб, но мы не рыбы; мы прямые потомки бактерий, но мы не бактерии. Но если в нас нет некоего таинственного дополнительного ингредиента (который обычно имели в виду дуалисты и виталисты), то мы состоим из роботов, или, что то же самое, каждый из нас является собранием триллионов макромолекулярных машин. А все они произошли от первоначальных самореплицирующих макромолекул. Поэтому тот, кто состоит из роботов, может проявлять настоящее сознание, поскольку он проявляет то, что есть у всех.

Некоторым людям все это покажется шокирующим и неправдоподобным, но подозреваю, что они не задумывались над тем, насколько бесперспективными являются альтернативы. Дуализм (воззрение, согласно которому психика состоит из некоторого нефизического и крайне таинственного материала) и витализм (воззрение, согласно которому живые существа содержат в себе некий особый физический, но в равной степени таинственный материал — elan vital) выброшены на свалку истории вместе с алхимией и астрологией. Если только вы не готовы также признать, что земля является плоской, а солнце представляет собой огненную колесницу, которую несут крылатые кони, — другими словами, если только вы не хотите бросить вызов всей современной науке, вы не найдете в ней места для защиты этих устаревших идей. Поэтому, давайте посмотрим, какую историю можно рассказать, используя традиционные ресурсы науки. Быть может, идея о том, что наша психика эволюционировала из более простых видов психики, окажется в итоге не такой уж плохой.

Наши макромолекулярные предки (а они и были нашими предками в точном и неметафорическом смысле) в некоторых отношениях совершали нечто подобное деятельности, как явствует из цитаты Эйгена, но в остальном они все еще, несомненно, проявляли пассивность, блуждая наугад, проталкиваясь взад-вперед и в полной готовности ожидая, так сказать, момента для совершения действия, но ожидая отнюдь не с надеждой, решительностью или четким намерением. Они могли держать свои «челюсти» наготове, но действовали ими столь же механически, как стальной капкан.

Что изменилось? Ничего неожиданного. Прежде чем обрести психику, наши предки обрели тела. Сперва они стали простыми клетками или прокариотами, а затем постепенно включили в себя некоторых захватчиков или постояльцев и благодаря этому стали сложными клетками — эукариотами. К этому времени, приблизительно через миллиард лет после первого появления простых клеток, наши предки были уже необычайно сложными машинами (состоящими из машин, которые в свою очередь состояли из других машин), но все еще не имели психики. Они, как и прежде, были пассивны и не имели нецеленаправленных траекторий движения, но теперь они были оснащены многими специализированными подсистемами, позволяющими извлекать энергию и сырье из окружающей среды, обеспечивать защиту, а в случае необходимости и осуществлять собственное восстановление.

Сложно организованная координация всех этих частей не слишком походила на психику. Аристотель дал ей — или ее потомкам — имя; он назвал ее растительной душой. Растительная душа — это не вещь; например, она не является одной из микроскопических подсистем, циркулирующих в цитоплазме клетки. Она есть принцип организации, это форма, а не материя, как говорил Аристотель. Все живые существа — не только растения и животные, но и одноклеточные организмы — обладают телами, которые нуждаются в организации саморегуляции и самозащиты, активизируемой разными способами в различных условиях. Эти системы блестяще сконструированы благодаря естественному отбору и в своей основе состоят из множества крошечных пассивных переключателей, ВКЛючаемых или ВЫКЛючаемых под воздействием столь же пассивных окружающих условий, в которых организмы оказываются во время своих странствий.

Вы сами, подобно всем остальным животным, имеете растительную душу — организацию саморегуляции и самозащиты, существующую отдельно от вашей нервной системы и гораздо более древнюю: она включает в себя систему обмена веществ, иммунную систему и другие потрясающе сложные системы самовосстановления и поддержания здоровья вашего тела. В качестве линий связи в этих древних системах использовались не нервы, а кровеносные сосуды. Задолго до появления телефона и радио существовали почтовые службы, пусть медленно, но надежно перевозившие по всему миру пакеты с ценной информацией. И задолго до появления нервных систем в организмах использовалась несложная почтовая система — благодаря циркуляции жидкостей ценные посылки с информацией, пусть медленно, но наделено доставлялись туда, где они были необходимы организму для управления и самоподдержания. Мы обнаруживаем потомков этой первоначальной почтовой системы и у животных, и у растений. У животных кровотоком переносятся полезные вещества и отходы, а также с самых первых дней он служит и информационной магистралью. Движение жидкостей в растениях также обеспечивает относительно рудиментарную среду для передачи сигналов из одной части растения в другую. Но у животных мы находим важное конструктивное новшество: развитие простейших нервных систем — предков вегетативной нервной системы, — способных к более быстрой и эффективной передаче информации, но все еще, в основном, обслуживающих внутренние потребности. Вегетативная нервная система — это вовсе не психика, скорее, это система управления, что-то вроде растительной души растения, сохраняющей базовую целостность живой системы”.

The 2004 Bertrand Russell Society Award to
DANIEL DENNETT
For living the life of a public intellectual with courage and wit in the spirit of Bertrand Russell,Всё самое интересное,интересное, познавательное,,разное,Клуб аметистов,клуб атеистов,Я - робот,Самоорганизация макромолекул,The Brights

Деннет Д. «Виды психики». М.: ИДЕЯ-ПРЕСС, 2004. Стр. 26-32.

Развернуть

#Клуб аметистов Появление жизни The Brights ...Всё самое интересное 

Как оно было: Жизнь

Невозможно представить себе, как сложнейшие клеточные элементы (преимущественно ферменты, т.е. катализаторы, в основе которых лежат молекулы белков) могли 3,7 млрд лет назад, когда жизнь впервые возникла на нашей планете, самопроизвольно сформироваться из неживой материи. В пионерских экспериментах 1950-х гг. Стэнли Миллер (Stanley L. Miller) и Харольд Юри (Harold C. Urey) из Чикагского университета обнаружили, что при определенных условиях из довольно простых химических соединений легко образуется основной строительный материал для синтеза белков — аминокислоты. Но переход от аминокислот к сложным молекулам белков и ферментов — это совершенно другое дело. 


➡ С чего начинается жизнь?


 Одна из наиболее сложных и интересных загадок происхождения жизни — это проблема образования из более простых веществ, присутствовавших на ранней Земле, таких молекул, которые были бы носителями генетической информации.


 Оценивая роль РНК в современных клетках, можно предположить, что рибонуклеиновые кислоты появились раньше дезоксирибонуклеиновых, потому что когда в клетке начинается синтез белка, в первую очередь происходит копирование гена этого белка из ДНК в РНК. Затем в процессе биосинтеза участвует только РНК, использующаяся в качестве шаблона для построения белковой молекулы. В самом начале развития жизни эти последующие стадии могли существовать сами по себе, независимо от ДНК. Позже, в результате мутации, могли появиться дезоксирибонуклеиновые кислоты, которые закрепились в клетке как более устойчивая форма хранения генетического материала благодаря своей более высокой химической стабильности.


 У исследователей есть еще один повод думать, что РНК появилась до ДНК. В современной клетке биосинтез белка осуществляется органоидами, которые называются рибосомами; так вот, рибосомы можно считать РНК-версией ферментов. Данные органоиды, отвечающие за процесс трансляции РНК, — это РНК-белковые комплексы, в которых именно рибонуклеиновая часть выполняет каталитическую функцию. Таким образом, каждая из наших клеток в своих рибосомах содержит свидетельство того, что существовавший в древности мир был миром РНК. 


➡ Требуется сборка


 Допустим, что теперь у нас есть отдаленное представление о том, как могли образоваться азотистые основания, углеводная и фосфатная группы. Следующий логический шаг — определить, каким образом данные компоненты могли бы соединиться в нужный нам полимер. Однако в последние несколько десятилетий именно этот этап вызывает у исследователей, занимающихся пребиотической химией, наиболее сильную фрустрацию. Проблема в том, что простое смешивание трех компонентов в воде не приводит к спонтанному формированию нуклеотидов — в основном потому, что в результате каждой реакции конденсации выделяется молекула воды, из-за чего в водных растворах подобные реакции самопроизвольно практически не протекают. Образование подобных химических связей возможно, но процесс будет идти с поглощением энергии, поэтому реакцию способно ускорить, например, присутствие высокоэнергетических соединений. Такие соединения вполне могли существовать на ранней Земле, однако лабораторные эксперименты с участием этих веществ оказались в лучшем случае малопроизводительными, а в большинстве случаев — совершенно безуспешными.


 Весной 2009 г. большой переполох устроили Джон Сазерленд (John Sutherland) и его соавторы из Манчестерского университета в Англии, сообщив, что они нашли гораздо более вероятный способ формирования нуклеотидов, позволяющий избежать неясностей, связанных с нестабильностью рибозы. Их метод основан на использовании тех же простых исходных веществ, что и в предыдущем случае — цианидов, ацетилена и формальдегида. Однако на этом сходство заканчивается. Нестандартно мыслящие химики нарушили традицию, даже не пытаясь воссоздать нуклеотиды путем соединения азотистого основания, углевода и фосфатной группы. Вместо того чтобы синтезировать азотистые основания и рибозу независимо друг от друга, а затем тратить силы на попытки соединить их, исследователи смешали необходимые исходные вещества вместе с фосфатом. В итоге цепь последовательных реакций (в которой фосфат на нескольких ступенях выступает в качестве основного катализатора) привела к образованию маленькой молекулы под названием 2-аминооксазол, которую можно рассматривать как фрагмент углевода, соединенного с частью азотистого основания. Важная особенность данного вещества — то, что оно очень летучее, и молекулы его стабильны.

} ^/ДВОЙНАЯ НИТЬ РНК
V '•	    '*	/	'Т'
‘-V	1	Г2^\Л
* .'и
ъ>л
к
\ • ,  —\	•' "?
.4  ЛАГ К
>	•	и	;
' ч*-* N.
.Г<	..
Углевод /т Т ) ’"' Г	\
-Азотистое-
основание
|	тФосфатная груцпа^ £
' *^ч \-jyy .,-•••■ |
Углевод- ^	\	Комплементарные
фосфатный	I	пары азотистых
«костяк»	\	оснований

   Предположим, что небольшие количества 2-аминооксазола образовались в океанах древней Земли и оказались в смеси с прочими химическими веществами. По мере того как вода с поверхности морей испарялась, 2-аминооксазол улетучивался, а затем конденсировался где-нибудь еще, но уже в очищенной форме. Там он мог накапливаться, образовывая естественный резервуар вещества, готового для последующих химических превращений, в итоге способных привести к образованию полного углевода и азотистого основания, соединенных друг с другом. Другое существенное и внушающее оптимизм преимущество этой цепочки реакций — автокатализ: образующиеся на ранних стадиях промежуточные продукты реакций становятся катализаторами для превращений, происходящих на более поздних стадиях процесса. Смесь нуклеотидов, которая образуется в результате реакций, содержит не только «правильные» нуклеотиды; в некоторых случаях углевод и азотистое основание, соединяясь, дают иную пространственную конфигурацию. Однако облучение ультрафиолетом (а на молодой Земле мелководье, где зарождалась жизнь, подвергалось интенсивному облучению) разрушает «неправильные» нуклеотиды и оставляет неповрежденными «правильные» экземпляры. Конечный результат — удивительно чистая смесь цитозина и урацила, нуклеотидов, составляющих современные рибонуклеиновые кислоты. Конечно, остается проблема синтеза G и А, так что исследователям пока хватает работы, но открытие команды Сазерленда — большой шаг на пути развития наших представлений о том, как сложная полимерная молекула РНК могла сформироваться миллионы лет назад на Земле.


➡ Опыты в пробирке


 Выяснив, каким образом на молодой планете могли появиться готовые нуклеотиды, ученые оказались перед последним препятствием: как соединить их в полимерную молекулу РНК. Образование связи между углеводной группой одного нуклеотида и фосфатной группой другого (так, чтобы мономеры один за другим выстроились в цепь) относится к реакциям поликонденсации, при которых происходит отщепление молекулы воды. Из-за этого, как уже говорилось выше, подобные превращения в водных растворах самопроизвольно не протекают и всегда сопровождаются поглощением энергии. Добавляя различные реагенты в раствор химически активных «версий» нуклеотидов, исследователи смогли получить короткоцепочечные молекулы РНК (от двух до 40 мономеров длиной). Затем в конце 1990-х гг. Джим Феррис (Jim Ferris) со своими коллегами из Политехнического института Ренсселера показали, что глинистые минералы облегчают процесс, позволяя синтезировать цепи в 50 или около того нуклеотидов (длина обычного гена сегодня составляет от тысяч до миллионов мономеров). Свойство глинистого субстрата осаждать на своей поверхности нуклеотиды приводит к сближению активных молекул, что стимулирует их соединение. Это открытие привело некоторых исследователей к мысли, что жизнь могла появиться на глинистой поверхности, возможно, на дне грязевых луж, появляющихся в результате весенней оттепели.


 К сожалению, появление полимера — носителя генетической информации не решает проблему происхождения жизни. Для того чтобы подходить под определение живых, организмы должны не только содержать в себе генетическую информацию, но и обладать способностью к размножению, т.е. самовоспроизводству — процессу, который включает в себя ее копирование. В современных клетках за это отвечают ферменты, основу которых составляют белки. Однако недавно специалисты обнаружили, что нуклеиновые полимеры, содержащие в себе «правильные» последовательности нуклеотидов, могут изгибаться в структуры определенной формы, обладающие каталитической активностью, и инициировать те химические реакции, которые сегодня ускоряются ферментами. Следовательно, существует вероятность, что в самых первых организмах РНК могла катализировать свою собственную репликацию. Такая точка зрения привела к серии экспериментов, проведенных в двух лабораториях: нашей и Дэвида Бартела (David Bartel) из Массачусетсского технологического института. Нам удалось создать «новые рибосомы». Мы начали с синтеза триллионов случайных последовательностей РНК. Затем выбрали из них те, которые обладали каталитическими свойствами, и скопировали их. В процессе копирования иногда происходили ошибки (иначе говоря, мутации), в результате чего некоторые из дочерних цепочек РНК оказались более эффективными катализаторами. Мы отделили их для следующего раунда копирования. Затем проделали это снова и снова. В результате такого целенаправленного отбора мы смогли получить молекулы нуклеиновых кислот, которые катализируют копирование других РНК с относительно малой длиной цепи.


 К сожалению, они были все еще очень далеки от саморепликации, т.е. от способности копировать полимеры с собственной последовательностью нуклеотидов. Недавно принцип саморепликации РНК получил подтверждение благодаря исследованиям Трэйси Линкольн (Tracey Lincoln) и Джеральда Джойса (Gerald Joyce) из Исследовательского института Скриппса, создавших два вида рибосомальных РНК, каждая из которых могла делать копии другой, соединяя вместе два более коротких отрезка РНК. К сожалению, в экспериментах было необходимо присутствие уже существующих фрагментов РНК нужной длины и структуры, которые в данном опыте не образовывались самопроизвольно. Тем не менее исследования показывают, что РНК обладают примитивной каталитической активностью, позволяющей (хотя бы отчасти) обеспечивать собственную репликацию.


 Исследования, проведенные в начале 1970-х гг., показали, что мембраны действительно могут самопроизвольно формироваться из простых жирных кислот, однако они представляют собой внушительный барьер, препятствующий проникновению нуклеотидов и других высокомолекулярных компонентов в клетку. Следовательно, если первые мембраны состояли из жирных кислот, то протоклетки в первую очередь должны были освоить клеточный метаболизм, позволяющий самостоятельно синтезировать макромолекулы (в том числе нуклеотиды). Однако проведенная в нашей лаборатории работа показала, что молекулы такого размера, как нуклеотиды, на самом деле могут легко проникать сквозь мембраны при условии, что они представляют собой более «примитивную» версию, нежели их современные аналоги. Данное открытие привело нас к разработке и проведению простого эксперимента, моделирующего способность протоклеток к копированию своего генетического материала с использованием в качестве строительного материала компонентов окружающей среды. Мы создали пузырек, окруженный мембраной на основе жирных кислот, который содержал короткий участок одноцепочечного фрагмента ДНК. Как и ранее, ДНК должна была служить шаблоном для синтеза новой цепи. Затем мы выдержали пузырек в химически активных версиях нуклеотидов. Нуклеотиды самопроизвольно прошли сквозь мембрану и, попав в протоклетку, присоединились к цепи ДНК, соединившись между собой и образовав комплементарную цепочку. Данный эксперимент стал одним из подтверждений гипотезы, что первые протоклетки содержали РНК (или что-то сходное с ними) в смеси с какими-то другими незначительными компонентами и реплицировали свой генетический материал без помощи ферментов. 


➡ Да будет деление!


 Для того чтобы протоклетки стали способными к самовоспроизводству, они должны были «освоить» рост, удвоение своего генетического материала и деление на две эквивалентные «дочерние» клетки. Что касается роста, эксперименты показали, что примитивные пузырьки могут увеличиваться в размерах двумя различными способами. В 1990-х гг. Пьер Луиджи Луизи (Pier Luigi Luisi) с коллегами из Федерального технологического института в Цюрихе, Швейцария, добавил жирные кислоты в раствор, окружающий протоклетку. Сразу после этого мембраны включили в себя дополнительные молекулы, увеличив площадь своей поверхности. По мере того как вода и растворенные вещества начали медленно проникать внутрь мембраны, протоклетка стала увеличиваться в размерах. Второй способ, который был обнаружен нашей лабораторией, точнее аспиранткой Ирен Чен (Irene Chen), включает в себя «соревнование» между протоклетками. Модельные протоклетки помещались в раствор, после чего под действием осмоса (т.е. стремления воды проникнуть в клетку и выровнять концентрации растворов внутри и вне ее) они поглощали воду и раздувались. Мембраны таких раздувшихся пузырьков растягивались и, чтобы снизить натяжение, включали в себя новые молекулы жирных кислот, что приводило к уменьшению общей энергии системы и одновременно к росту размеров такой протоклетки. При этом протоклетка поглощала жирные кислоты, необходимые для увеличения поверхности мембраны, из мембран своих «соседей», чьи оболочки не были растянуты; соседние пузырьки, соответственно, уменьшались в размерах.


 При наличии нужных строительных блоков формирование протоклеток не кажется слишком уж сложным: мембраны образуются в результате самосборки, нуклеиновые полимеры формируются в результате самосборки; оба компонента могут соединиться любым способом: например, мембрана может сформироваться вокруг уже образовавшегося нуклеинового полимера. Подобные пузырьки, заполненные водой и РНК, способны, как было сказано выше, расти, поглощать новые молекулы, конкурировать с «соседями» за питательные вещества и делиться. Но чтобы стать живыми, они также должны воспроизводить свой генетический материал и эволюционировать. В частности, им необходимо «уметь» разделять свои двойные нити РНК на отдельные цепочки, чтобы каждая могла перейти в дочерние клетки и функционировать там как матрица для синтеза новой двойной нити. Этот процесс не мог стартовать сам по себе, но мог запуститься в результате небольшого толчка извне.


 Представим вулканический район на противоположной, холодной поверхности ранней Земли (в то время, когда Солнце светило лишь на 70% от своей современной мощности). В таком месте должны были быть лужи холодной воды, возможно, частично покрытые льдом, но остающиеся жидкими за счет тепла горячих горных пород на дне. Разница температур приведет к появлению восходящих и нисходящих токов (горячего и холодного течения), так что время от времени все протоклетки в воде будут подвергаться разрушительному воздействию тепла в тот момент, когда течение будет проносить их мимо раскаленных пород, и постоянно охлаждаться, когда горячая вода будет подниматься и смешиваться с основной массой холодной воды. Резкое нагревание может вызвать разделение двойной спирали на отдельные цепочки, охлаждение — то, что из одиночных цепочек, используемых в качестве шаблона, образуются две новые спирали, точные копии изначальной.

Горячая часть водоема
4 Мембрана включает в себя новые & молекулы & жирных кислот и растет
5 Протоклетка делится, и «дочерние»
. клетки %% воспроизводят цикл
Дочерние;
клетки
Жирные
молекулы
1 Нуклеотиды проникают в протоклетку и формируют комплементарную цепь ^
Нуклеотиды
2 Протоклетка

 Относительно просто представить, как протоклетки, содержащие РНК, начали эволюционировать. Метаболизм мог усложняться постепенно, по мере того как новые рибозимы обеспечивали клеткам синтез собственных необходимых макромолекул из более простых и доступных составляющих. Затем протоклетки могли к прочим своим химическим «трюкам» добавить биосинтез белка. Благодаря своим удивительным многообразию и изменчивости белки постепенно взяли на себя часть функций РНК, начав работать «ассистентами» при копировании генетического материала и все больше участвуя в осуществлении метаболизма. Позднее живые организмы могли «научиться» синтезировать ДНК, что дало им преимущество обладания более надежным носителем генетической информации. С этого момента РНК-мир превратился в мир ДНК, и жизнь стала такой, какой мы ее знаем.

 Алонсо Рикардо и Джек Шостак 


 «В мире науки» № 11, 2009. Стр. 25-33. Перевод Т.А. Митиной.


Развернуть
Смотрите ещё
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме The Brights (+23 картинки, рейтинг 69.4 - The Brights)