Результаты поиска по запросу «

Девушка в форме рейха

»
Запрос:
Создатель поста:
Теги (через запятую):



Интересный космос Мультивселенная мультимир наука Теория физика ...Всё самое интересное 

Существует ли Мультимир на самом деле?

Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика


      Доказательство существования параллельных вселенных, совершенно не похожих на нашу, может оказаться за пределом возможностей науки. За последние десятилетия в космологии появилось новое поле научной деятельности, увлекшее многих ученых. Расширяющаяся вокруг нас Вселенная может оказаться не единственной: нас могут окружать миллиарды других вселенных. Возможно, наш мир представляет собой лишь часть Мультимира.

      В статьях журнала «В мире науки», а также в книгах, например в последней книге Брайана Грина (Brian Greene) «Скрытая реальность» (The Hidden Reality), ведущие ученые обсуждают эту «сверхкоперниканскую революцию». Не только наша планета одна среди многих, но и сама наша Вселенная - всего лишь песчинка в масштабах космоса; одна среди бесчисленных вселенных, каждая из которых не похожа на другие. Слово «Мультимир» многозначно. Размер космологического горизонта, т.е. области, доступной астрономическим наблюдениям, составляет около 42 млрд световых лет. Однако у нас нет причин полагать, что Вселенная ограничивается этой областью. Дальше могут простираться другие, и их может быть бесконечно много. Каждая обладает различным начальным распределением вещества, но одинаковыми для всех физическими законами. Практически все космологи, включая меня, принимают такую гипотезу строения Мультимира. Космолог Макс Тегмарк (Max Tegmark) называет ее «Уровень 1». Однако нашлись и те, кто придерживается более радикальной гипотезы, которая заключается в том, что вселенные Мультимира могут быть совершенно различными, с разными законами физики, разными историями и, возможно, даже с разным количеством пространственных измерений. Большинство таких вселенных стерильны, но некоторые могут быть пригодны для жизни. Главный вдохновитель этого «Уровня 2» - Александр Виленкин (Alexander Vilenkin). В бесконечном множестве вселенных есть бесконечное множество галактик и, следовательно, бесконечное множество планет и даже бесконечно много людей с вашим именем, читающих сейчас эти строки.

      Подобные утверждения делались не раз с античных времен. Однако теперь концепция Мультимира претендует на статус научной теории, положения которой могут быть математически строго сформулированы и экспериментально проверены. Лично я смотрю на это скептически: вряд ли можно доказать существование вселенных, лежащих за пределами нашей. Сторонники теории Мультимира, стремясь расширить наше представление о физической реальности, тем самым меняют смысл понятия «наука».


За горизонтом


Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика

      Тот, кто разделяет радикальную концепцию Мультимира, может предложить несколько сценариев его возникновения и указать, где размещаются все «дочерние» миры. Так, согласно модели Алана Гута (Alan H. Guth), Андрея Линде (Andrei Linde) и других, многочисленные вселенные могут располагаться очень далеко от нас, в причинно не связанных областях пространства, формирующихся в ходе хаотической инфляции. Другие вселенные могут существовать в различные временные эпохи, как это предложили в модели циклической Вселенной Пол Стейнхард (Paul J. Steinhardt) и Нейл Тюрок (Neil Turok). Они также могут существовать и в одном пространстве с нами, но при различных реализациях квантовой волновой функции, как предполагает Дэвид Дойч (David Deutsch). Они могут вообще не обладать определенной пространственной локализацией, будучи совершенно отделены от нашего пространства-времени, как это предполагают Макс Тегмарк и Дэннис Шьяма (Dennis Sciama).


Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика


   Идея о параллельных вселенных перекочевала со страниц фантастических романов в научные журналы в 1990-е гг. Многие ученые утверждают, что миллионы других вселенных, каждая со своими законами физики, лежат за пределами нашего горизонта. Все вместе они называются Мультимир.

   Беда в том, что никогда не удастся увидеть эти вселенные при помощи астрономических наблюдений. Аргументы в их пользу в лучшем случае косвенные. Но даже если Мультимир существует, это не поможет нам разгадать глубокие тайны природы.


      Из всех перечисленных вариантов самый популярный – подход в рамках модели хаотической инфляции. Далее я буду говорить именно о нем, хотя ряд замечаний можно отнести и к другим моделям Мультимира. Идея заключается в том, что мир в целом представляет собой вечно расширяющуюся пустоту, в которой из-за квантовых эффектов непрерывно рождаются новые вселенные; этот процесс напоминает выдувание мыльных пузырей. Идея инфляции восходит к 1980-м гг.; работавшие над ней физики опирались на самую всеобъемлющую теорию природы – теорию струн. Согласно ей, пузыри сильно отличаются друг от друга: не только различным распределением вещества, но и различным типом вещества. В нашей Вселенной такие частницы, как электроны и кварки, взаимодействуют друг с другом посредством разных сил, например электромагнитных. В других вселенных могут быть совсем другие частицы, подчиняющиеся иным взаимодействиям; т.е. физические законы в разных частях Мультимира могут быть различны. Всю совокупность этих законов называют ландшафтом (смотри статью Рафаэля Буссо (Raphael Bousso) и Йозефа Полчински (Joseph Polchinski). В некоторых интерпретациях струнной теории ландшафт гарантирует громадное многообразие вселенных.

      Многие физики, рассуждающие о Мультимире, защищают концепцию ландшафта струнной теории, не заботясь о других возможных интерпретациях параллельных миров. Для них не важны фундаментальные возражения против Мультимира как научной концепции. Теория признается жизнеспособной или нет в зависимости от внутренней непротиворечивости своих положений или, по возможности, в зависимости от экспериментальных исследований. Концепция Мультимира задается при таком подходе аксиоматически. Сторонников подобного подхода не заботят вопросы о происхождении самого Мультимира. Но для космологов это важно.

      С точки зрения космолога главная проблема всех теорий, связанных с Мультимиром, – наличие космологического горизонта, ограничивающего область применения астрономических инструментов. Горизонт существует, потому что сигналы, идущие отовсюду к наблюдателю, распространяются с конечной скоростью, не превышающей скорости света. С момента рождения нашей Вселенной сигналы успели пройти определенный путь. Все параллельные вселенные лежат за пределами этого горизонта и остаются вне нашего поля зрения ныне и вовеки, вне зависимости от будущего технического прогресса человечества. Иными словами, параллельные вселенные слишком далеки от нас, чтобы оказать на нас когда-нибудь хоть какое-то влияние.


Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика


Когда астрономы вглядываются во Вселенную, они видят до расстояния около 42 млрд световых лет; это наш космический горизонт, который определяется тем, как далеко смог уйти свет с момента Большого взрыва (а можно сказать -насколько расширилась Вселенная с того момента). Считая, что пространство не ограничено этим размером и вполне может быть бесконечным, космологи делают предположения о том, как выглядят остальные части мира.

Мультимир первого уровня: вероятный. Самое простое предположение состоит в том, что наш объем пространства типичен для мира в целом. Далекие наблюдатели видят другие объемы, но все они выглядят в целом одинаково за исключением случайных вариаций в распределении вещества. Вместе эти области - наблюдаемые и ненаблюдаемые - составляют Мультимир основного типа

Мультимир второго уровня: сомнительный. Многие космологи идут дальше и предполагают, что на достаточно большом расстоянии все выглядит совсем не так, как у нас. Наши окрестности могут быть лишь одним из множества пузырей, плавающих в пустоте. Законы физики могут различаться от пузыря к пузырю, что привело бы к немыслимому разнообразию явлений. Те другие пузыри могут быть даже в принципе ненаблюдаемыми. Автор и другие скептики полагают сомнительным этот тип Мультимира


      Таким образом, ни одно из утверждений сторонников существования Мультимира невозможно проверить путем наблюдений. Существуют возражения против этой точки зрения: всю необходимую информацию о процессах, происходящих сколь угодно далеко от нас, можно получить, находясь в рамках горизонта. Это экстраполяция совершенно особо рода, ведь в действительности мы не знаем и не можем знать, что происходит в областях за горизонтом. Быть может, наша Вселенная замкнута на сверхбольших расстояниях, и бесконечности вообще не существует. Быть может, все вещество во Вселенной где-то заканчивается, и дальше до бесконечности идет совершенно пустое пространство. Быть может, сами пространство и время завершают свое существование в сингулярности – на границе нашей Вселенной.


Семь сомнительных аргументов


      Почти все сторонники гипотезы Мультимира знают об упомянутой проблеме и осторожны в своих суждениях, но они полагают, что можно сделать разумные предположения о важнейших свойствах Мультимира. Их аргументы делятся на семь основных типов, каждый из которых приводит к нерешенным проблемам. Пространство безгранично. Пространство простирается за наш космологический горизонт, и многие другие домены, подобные нашей Вселенной, лежат вне области, доступной нашим наблюдениям. Если такой ограниченный тип Мультимира существует, то мы можем экстраполировать то, что видим, на лежащие за горизонтом домены. По мере удаления наша экстраполяция будет все менее и менее определенной. Легко вообразить себе множество разнообразных доменов, в том числе и таких, в которых могут нарушаться законы физики, - но это будет так далеко, что мы этого никогда не увидим. Проблема подобной экстраполяции состоит в том, что никто не может определить, правы мы или нет. Как ученые смогут решить, верна представленная ими на основе экстраполяции имеющихся наблюдений картина далеких частей Мультимира или нет? Могут ли другие домены-вселенные обладать различными начальными распределениями вещества, или они также могут обладать различными значениями фундаментальных физических постоянных, таких как константы ядерного взаимодействия? В зависимости от наших предположений оказывается возможным получить все что угодно.

      Известные законы физики предсказывают другие домены. В современных теориях объединения физических взаимодействий возникают новые сущности, такие как гипотетические скалярные поля, которые могут заполнять пространство и определять его свойства. Например, поле инфлатона может быть ответственно за инфляцию - экспоненциальное расширение вселенных. В модели хаотической инфляции процесс рождения и расширения вселенных может быть вечным. Модели со скалярными полями имеют хорошее теоретическое обоснование, однако физическая природа таких полей остается неизвестной. Кроме того, физики не могут привести достаточно оснований для доказательства того, что динамика таких полей способна приводить к появлению различных физических законов, действующих в различных вселенных.

      Теория, предсказывающая бесконечное количество вселенных, проходит ключевой наблюдательный тест. Космическое микроволновое фоновое (т.е. реликтовое) излучение характеризует раннюю горячую Вселенную и демонстрирует, как она выглядела в конце инфляционной стадии первичного расширения. Детали этой картины показывают, что наша Вселенная действительно прошла стадию экспоненциального расширения. Но не все теоретически возможные варианты инфляции длятся вечно и порождают бесконечное число дочерних вселенных. Наблюдения не могут выявить единственную модель инфляции среди многих других. Некоторые космологи, например Стейнхард, даже согласны с тем, что вечная инфляция должна привести к другим «отпечаткам» на реликтовом излучении, нежели это наблюдается. Линде и некоторые другие космологи не согласны с такой точкой зрения. Кто же из них прав? Ответ зависит от того, какими мы предполагаем физические свойства поля, вызывающего инфляцию.


           

Шансы, что жизнь Шансы, что вселенная Высокая сохранится сформируется ж) I • Необитаемая вселенн« Низкая Низкая Наблюдаемая Плотность темной энергии,Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика


Сторонники идеи Мультимира часто приводят как аргумент плотность темной энергии, доминирующей в нашей Вселенной. Процесс вечной инфляции наделяет каждую вселенную в Мультимире случайной плотностью темной энергии. У немногих вселенных ее значение нулевое или малое, у большинства - высокое (синяя зона). Но слишком плотная темная энергия разрушит сложные структуры, необходимые для поддержания жизни (красная зона). Так что у большинства пригодных для жизни вселенных должна быть средняя плотность (пик в области перекрытия), точь-в-точь как у нашей Вселенной. Но критики идеи Мультимира говорят, что это замкнутый круг: такое рассуждение справедливо, только если вы уверены, что Мультимир существует.


      Фундаментальные константы тонко настроены для существования жизни. Важное замечание относительно нашей Вселенной заключается в том, что все физические постоянные имеют такие значения, которые делают возможным существование сложных структур, включая живые организмы. Стивен Вайнберг (Steven Weinberg), Мартин Рис (Martin Rees), Леонард Сасскинд (Leonard Susskind) и другие полагают, что концепция бесконечно многообразного Мультимира дает превосходное объяснение имеющимся значениям фундаментальных физических констант. Коль скоро мир бесконечен и допускает все что угодно, то рано или поздно случайным образом возникнет мир, приспособленный для нашего существования. Такой аргумент, в частности, применялся для объяснения наблюдаемой плотности темной энергии, которая вызывает современное ускоренное расширение Вселенной. Я согласен с тем, что концепция Мультимира дает нам одно из возможных объяснений значения плотности темной энергии, причем это единственное научно обоснованное предположение о значении этой плотности, которое мы сегодня имеем. Но у нас нет надежды проверить это предположение путем наблюдений. Кроме того, теоретические исследования этого вопроса показывают, что основные уравнения физики остаются неизменными для всех областей Мультимира, что отличия присутствуют только в значениях фундаментальных постоянных. Однако если принимать концепцию Мультимира серьезно, то в этом нет необходимости.

      Фундаментальные константы делают Мультимир предсказуемым. Этот аргумент улучшает предыдущий за счет предположения о том, что наша Вселенная приспособлена к жизни минимальным образом. Сторонники такого подхода оценили вероятности различных значений плотности темной энергии. Чем больше это значение, тем более оно вероятно; но при этом менее вероятно появление жизни. Значение плотности темной энергии, которое мы наблюдаем, балансирует на грани благоприятных для нас значений. Проблема этого аргумента в том, что мы не можем применить вероятностный подход, если не существует Мультимира для применения самой концепции вероятностей. Таким образом, этот аргумент позволяет получить желаемое, заложив его как начальное условие цепочки рассуждений. Этот аргумент неприменим, если существует лишь одна вселенная. Вероятностный подход доказывает согласованность гипотезы Мультимира, но не само его существование.

      Струнная теория предсказывает разнообразие вселенных. Изначально струнная теория была призвана объяснить все на свете, а теперь стала теорией, в которой может реализоваться практически все. В своем текущем состоянии теория струн предсказывает, что многие из основных свойств нашей Вселенной чисто случайны. Если Вселенная единственна в своем роде, то ее свойства необъяснимы. Например, как мы можем понять тот факт, что физика обладает ровно теми свойствами, которые нужны для существования жизни? Если наша Вселенная - одна из многих, то ее свойства обладают смыслом. Эти свойства - единственно возможные в нашей области пространства. Если бы мы жили в других областях, то наблюдали бы другие свойства, если, конечно, они оказались бы совместимы с нашим существованием. Однако теория струн пока не проверяема экспериментальными методами; до сих пор она не полностью сформулирована даже теоретически. Если мы сможем доказать, что теория струн верна, то все ее предсказания станут обоснованными, и таким образом гипотеза Мультимира получит поддержку. Но пока мы не располагаем доказательствами.

      Все, что может случиться, случается. В попытках объяснить, почему в природе реализуются именно такие, а не иные законы природы, некоторое физики и философы полагают, что природа не делает выбора, не отдает предпочтения тем или иным законам: все возможные законы где-нибудь да реализуются. Отчасти эта идея идет от квантовой механики. Как сказал когда-то Мюррей Гелл-Манн (Murray Gell-Mann), «все, что не запрещено, разрешено». В квантовой теории частица перемещается по всем возможным путям, а наблюдатель фиксирует некую усредненную траекторию. Возможно, то же самое верно и для поведения вселенных применительно к Мультимиру. Но астрономы не имеют возможности наблюдать все возможные варианты. Мы не можем даже знать, есть ли эти варианты. Мы можем только представить себе эти предложения как некие непроверяемые принципы или правила, говорящие, что верно, а что нет. Например, что все возможные математические структуры обязаны быть реализованы в некотором физическом домене (так предлагает М. Тегмарк). Однако мы не знаем, какой тип существования влекут за собой эти принципы, которые должны включать и наш мир. Кроме того, у нас нет способа проверить, есть ли такие принципы организации. Приложение их к реальному миру выглядит чистой спекуляцией.


Отсутствие доказательств


да >ч. V?; •À& ><•*.,Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика


Карта (панорама) анизотропии реликтового излучения (горизонтальная полоса — засветка от галактики Млечный Путь). Красные цвета означают более горячие области, а синие цвета — более холодные области.


Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика


Восстановленная карта (панорама) анизотропии реликтового излучения с исключённым изображением Галактики, изображением радиоисточников и изображением дипольной анизотропии. Красные цвета означают более горячие области, а синие цвета — более холодные области.


      Несмотря на слабость теоретических аргументов, космологи предложили несколько эмпирических тестов для проверки существования параллельных вселенных. Реликтовое излучение может содержать следы других вселенных, если наша Вселенная когда-либо сталкивалась с ними согласно сценарию хаотической инфляции. Это излучение может содержать и следы вселенных, которые были до Большого взрыва в рамках сценария бесконечного цикла вселенных. Так что есть способы обнаружить реальные доказательства существования других миров. Некоторые космологи утверждают, что они уже видят искомые знаки. Но наблюдения и их интерпретация очень спорны; к тому же многие гипотетически возможные типы мультимиров не способны проявлять себя таким образом. Иными словами, наблюдатели могут проверить только узкий класс моделей. Еще один наблюдательный тест – поиск изменений одной или нескольких фундаментальных констант, чтобы подтвердить, что законы физики не так уж неизменны. Некоторые астрономы утверждают, что уже нашли такие изменения. Но большинство считают эти доказательства сомнительными. Третий тест – измерение формы наблюдаемой Вселенной: она сферическая (положительная кривизна), гиперболическая (отрицательная кривизна) или «плоская»? Модели Мультимира обычно предсказывают, что Вселенная не сферическая, поскольку сфера замкнута на себя, а значит, имеет конечный объем. К сожалению, это ненадежный тест: Вселенная за пределами нашего горизонта может иметь иную форму, чем у наблюдаемой ее части. Более того, не все теории Мультимира исключают сферическую геометрию. Эффективный тест – топология Вселенной: искривлена ли она как пончик или крендель? Если да, то ее размер конечен, что, несомненно, опровергает большинство версий инфляции, в частности сценарии Мультимира, основанные на хаотической инфляции. Такая форма проявится в повторяющихся узорах на небе, таких как гигантские круги в распределении реликтового излучения. Наблюдатели искали, но не нашли такие узоры. Впрочем, этот отрицательный результат нельзя рассматривать как аргумент в пользу Мультимира. Наконец, физики могут надеяться доказать или опровергнуть некоторые теории, предсказывающие Мультимир. Они могли бы найти наблюдательные доказательства против хаотической версии инфляции или обнаружить математические либо эмпирические нестыковки, которые заставят их отказаться от ландшафта теории струн. Это подорвало бы их энтузиазм в отношении идеи Мультимира, хотя и не исключило бы эту идею окончательно.


Слишком много неопределенности


      В целом идея Мультимира не выглядит продуктивной. Главная причина – чрезвычайная гибкость предположений: это скорее концепция, нежели четкая теория. Большинство ее положений – больше смесь различных идей, чем нечто цельное. Основной механизм вечной инфляции сам по себе не приводит к тому, что в разных доменах Мультимира возникает разная физика; для этого к нему нужно добавить другую спекулятивную теорию. Хотя их можно было бы объединить, в этом нет острой необходимости.

Ключевой шаг в оправдании Мультимира – это экстраполяция от известного к неизвестному, от проверяемого к непроверяемому. Вы получите разные ответы в зависимости от того, что выберете для экстраполяции. Поскольку теории, использующие Мультимир, могут объяснить почти все что угодно, любое наблюдение можно согласовать с каким-либо вариантом Мультимира. Фактически эти «доказательства» толкают нас к тому, чтобы принять теоретическое объяснение и не настаивать на проверке путем наблюдений. Но до сих пор именно такая проверка была важнейшим требованием научного метода, и мы сильно рискуем, отказываясь от нее. Если мы ослабим требование к надежности данных, то лишимся основы успеха науки в течение последних столетий.

      Разумеется, единое объяснение некоторого круга явлений предпочтительнее, чем набор отдельных толкований для того же массива явлений. Если объединяющее объяснение предполагает наличие ненаблюдаемых сущностей, таких как параллельные миры, мы могли бы с этим смириться. Но ключевой вопрос здесь в том, сколько этих ненаблюдаемых сущностей требуется. А именно, предполагаем ли мы количество этих сущностей больше или меньше числа явлений, которые хотим объяснить? В случае Мультимира мы постулируем существование огромного быть может, даже бесконечного - числа ненаблюдаемых сущностей, чтобы объяснить лишь одну реальную Вселенную. Вряд ли это согласуется с советом английского философа XIV в. Уильяма Оккама не умножать сущностей сверх необходимого.

      Защитники идеи Мультимира приводят последний аргумент: для нее нет достойной альтернативы. Хоть ученым и неприятна мысль о параллельных мирах, но если это наилучшее объяснение, то мы вынуждены его принять. И наоборот, если мы хотим отказаться от Мультимира, то должны предложить идею получше. Оценка альтернатив зависит от того, объяснение какого типа мы готовы принять. У физиков всегда была надежда, что законы природы неизбежны, что все происходит так, потому что не может происходить иначе. Но мы не смогли это доказать. Другие варианты тоже возможны. Вселенная может быть чистой случайностью, которая реализовалась именно таким образом. Или же в основе всего сущего лежит некая цель, замысел? Наука не может определить, где здесь истина, поскольку это уже область метафизики.

      Ученые предложили Мультимир как способ решения глубоких вопросов о природе бытия, но это предложение оставило важнейшие проблемы нерешенными. Все те же вопросы, которые возникают в отношении Вселенной, вновь встают и в отношении Мультимира. Если он существует, то возник ли он по необходимости, случайно или в результате замысла? Это вопрос метафизический, и никакая физическая теория не ответит на него ни в отношении Вселенной, ни в отношении Мультимира.

      Чтобы двигаться вперед, мы должны помнить, что в науке практика - критерий истины. Нам нужна некая причинная связь между теми сущностями, которые мы рассматриваем, иначе все размывается. Эта связь может быть косвенной. Если нечто ненаблюдаемо, но абсолютно необходимо для свойств других сущностей, которые надежно проверены, то и само оно может считаться проверенным. Но в этом случае обязательно нужна цепь надежных доказательств. Защитникам идеи Мультимира я бросаю вызов: сможете ли вы доказать, что ненаблюдаемые параллельные вселенные жизненно необходимы для объяснения того мира, который мы видим?

      Будучи скептиком, я считаю, что размышление о Мультимире - это прекрасная возможность задуматься о природе науки и о природе нашего бытия: почему мы здесь. Это наводит на новые интересные мысли и служит плодотворной исследовательской программой. Размышлять об этой концепции мы должны непредвзято, но и не слишком увлекаясь. Здесь важно не сбиться с пути. Параллельные вселенные могут быть или не быть; проверить это невозможно. Нам придется жить с этой неопределенностью. Нет ничего плохого в научно обоснованной философской концепции, какова и есть идея о Мультимире. Однако мы должны называть вещи своими именами.


                                                                                                                                                                         Перевод: В.Г. Сурдин


Об авторе


Всё самое интересное,интересное, познавательное,,разное,Интересный космос,Мультивселенная,мультимир,наука,Теория,физика

Джордж Эллис (George F. R. Ellis) - космолог и почетный профессор математики Кейптаунского университета (ЮАР), один из крупнейших в мире специалистов по общей теории относительности Эйнштейна и соавтор, вместе со Стивеном Хокингом, новаторской книги «Крупномасштабная структура пространства-времени» (М.: Мир, 1977).



Развернуть

...Всё самое интересное 

10 первых версий привычных нам вещей

О том как выглядели и что из себя представляли самые первые образцы тех вещей, которые мы используем каждый день, даже не задумываясь о том, насколько сильно они изменились с момента своего появления.

Первая компьютерная мышь — 1968 год.

Первая компьютерная мышь была мало похожа на современный гаджет – у нее был деревянный корпус в форме куба, колесики и всего одна кнопка. Внутри помещались два металлических диска, которые отвечали за движение мыши вперед-назад и вправо-влево. Название устройство получило благодаря проводу, которым соединялось с компьютером.

Всё самое интересное,интересное, познавательное,,разное

Современная компьютерная мышь оснащается как минимум двумя кнопками и колесом прокрутки. Вместо дисков, отвечавших за движение, сейчас используются лазерные или оптические датчики с высоким разрешением.

Всё самое интересное,интересное, познавательное,,разное

Первые наушники — 1895 год.

В конце позапрошлого века в Британии существовала такая услуга — прослушивание концертов и церковных песнопений по подписке дома. Компания устанавливала клиенту специальное устройство с четырьмя наушниками, которые необходимо было держать за ручку. Услуга стоила 5 фунтов в год, но за лишний фунт можно было добавить еще наушник. Эта система больше похожа на телефон.

Всё самое интересное,интересное, познавательное,,разное

Одни из самых дорогих серийно выпускающихся на сегодняшний день наушников — Stax SR-009. Это мониторные электростатические наушники, открытого типа, чувствительностью 101 дБ и частотным диапазоном 5 Гц – 42 кГц. Стоят они около 290 тыс. рублей.

Всё самое интересное,интересное, познавательное,,разное

iPhone первого поколения — 2007 год.

Первый iPhone был представлен 9 января 2007 года, а спустя полгода поступил в продажу. Он имел 3,5-дюймовый сенсорный экран разрешением 320х480, 128 Мб оперативной памяти и батарею на 1400 мАч. Первое поколение iPhone было снято с производства 24 июня 2010 года.

Всё самое интересное,интересное, познавательное,,разное

На сегодняшний день топовый продукт в линейке смартфонов от Apple — iPhone 6 Plus имеет экран 5,5 дюймов с разрешением 1920х1080, 1 Гб оперативной памяти и батарею ёмкостью 2915 мАч.

» • т т Um ч»и мю* ■ ■ □ G ® ® » 'S3 ЧвУл о».. OUI к*- >«•■■- *' /& •• V. в 0 Л «М^г Ma* Wk sa*-* Г' [ Ik,Всё самое интересное,интересное, познавательное,,разное

Первая версия Windows 1.0 — 1985 год.

Первые версии Windows не были полноценными операционными системами, а являлись надстройками к операционной системе DOS и были по сути многофункциональным расширением, добавляя поддержку новых режимов работы процессора, поддержку многозадачности, обеспечивая стандартизацию интерфейсов аппаратного обеспечения и единообразие для пользовательских интерфейсов программ.

ù File Dieu Special "ЕЕ: BPI С : CD \UINDOUS CfiLC.EXE CLOCK .EXE EDL.1MP CALENDAR.EXE CONTROL-EXE EDI1.BR CARDFILE.EXE COUR.EXE EDL2.BA t Pa>t « : 101700 Description : UHS Uideo Recorder Quantity : 766 -0*rice : 399.00 * 1 Unit Cost of Goods 2 1985 $200.00 3 1986 190.00 6 1987 175.00 5 1988

Последняя из анонсированных на данный момент Windows 10 — единая ОС для всевозможных устройств: компьютеров, планшетов, смартфонов, Xbox One и других. В ней будут доступны единая платформа разработки и единый магазин универсальных приложений, совместимых со всеми поддерживаемыми устройствами.

Всё самое интересное,интересное, познавательное,,разное

Первый лазерный принтер — 1985 год.

Эра домашних принтеров началась с 1985 года, когда на рынке появились принтеры LaserJet от Hewlett-Packard и LaserWriter от Apple Computer. В 1981 году термическая технология струйной печати была представлена на выставке Canon Grand Fair. В 1985 году — появилась первая коммерческая модель такого монохромного принтера — Canon BJ-80, в 1988 году появился первый цветной принтер — BJC-440 формата A2, разрешением 400 dpi.

Всё самое интересное,интересное, познавательное,,разное

Современные домашние принтеры — это, как правило, многофункциональные устройства, совмещающие в себе возможности принтера, сканера, копира и иногда факса.

Всё самое интересное,интересное, познавательное,,разное

Первый цифровой фотоаппарат — 1973 год.

Первая в мире цифровая фотокамера была произведена компанией Кодак аж в 1973 году. Фотографии записывались на обычную магнитную аудиокассету. Запись одной фотографии на такую кассету продолжалась около 30 секунд, а посмотреть фотографии можно было с помощью специального микрокомпьютера, задачей которого было считать изображение с кассеты и вывести на экран телевизора или монитора как обычный аналоговый видеосигнал.

Всё самое интересное,интересное, познавательное,,разное

Одна из самых дорогих цифровых фотокамер на сегодняшний день Hasselblad H5D-60 имеет сенсор в 60 мегапикселей (6708×8956 пикселя) и размерами 40.2×53.7 мм. Её цена составляет около 1,9 миллионов рублей.

Всё самое интересное,интересное, познавательное,,разное

Первый цветной телевизор — 1953 год.

После разработки и создания системы NTSC, в 1953 году в США началось регулярное цветное телевизионное вещание. Тогда же появились и цветные телевизоры. Тогда он стоил в среднем около тысячи долларов (половина стоимости среднего автомобиля), а его обслуживание в год обходилось примерно в такую же сумму. Требовалась, например, почти еженедельная настройка специалистом (ручек управления у первых телевизоров было больше ста).

Всё самое интересное,интересное, познавательное,,разное

Современные телевизоры, конечно же, все являются цветными. Различаются они по типу экрана: жидкокристаллические, плазменные, светодиодные и т.п. А так же оснащаются множеством дополнительных функций, таких как Smart TV, возможность приёма сигнала HDTV, встроенные приёмники цифрового телевидения и многие другие.

Всё самое интересное,интересное, познавательное,,разное

Первая версия Mac OS 1.0 — 1984 год.

Первая версия Mac OS (называлась просто System, сам термин «Mac OS» впервые был официально использован уже только в середине 1990-ых годов) была представлена 24 января 1984 года вместе с оригинальным Macintosh 128K. Она отличалась от существующих в то время других операционных систем тем, что в ней не было интерфейса с коммандной строкой — на смену ему пришел Графический Интерфейс Пользователя (GUI). Интерфейс был полностью черно-белый, без цветов.

Всё самое интересное,интересное, познавательное,,разное

Последняя из представленных на сегодняшний день OS X El Capitan была анонсирована 8 июня 2015 года на WWDC 2015.

« Flndvr «rtn npMu Bma neoetod Oc< Cnpowa _________________________________________________________________________________Oh20:10 Q. :S OS X El Capitán MM«n lUMtaliamMhwili W«« 1.4 X» m cor* « n—r. I r» «00 W. DO*J ktWMilw,Всё самое интересное,интересное, познавательное,,разное

Первый MP3-плеер — 1998 год.

В марте 1998 года южнокорейская компания Saehan Information Systems выпустила непонятное для тогдашего рынка устройство, способное проигрывать музыкальные файлы не с CD, а с цифровых файлов формата MP3, которые до сих пор работали только на компьютерах. Плеер F10 имел 32 мегабайта встроенной памяти и мог работать с трекам в кодировке до 128 кб/сек, вмещая их в количестве 8 штук.

Всё самое интересное,интересное, познавательное,,разное

Последний из выпущенных iPod touch имеет 4-дюймовый Retina дисплей и разнообразные варианты вместимости встроенного флеш-накопителя: от 16 до 128 Гб.

Всё самое интересное,интересное, познавательное,,разное

Первые электронные часы — 1972 год.

Титул первых в мире электронных часов получило устройство с амбициозным названием Pulsar Time Computer от компании Hamilton Watch Company. Разработано это устройство было в 1972 году. Компания-разработчик уже в самом названии дала понять, что это устройство, по сути, карманный компьютер. Для 1972 года это верх технологического прогресса. Соответственно, стоимость подобных часов была для того времени заоблачной — $ 2100, что равнялось стоимости недорого автомобиля. Популярность этих часов была такой большой, что их оценили даже в кинематографе – на запястье Бонда в одной из серий «Бондианы» он щеголяет в Pulsar Time Computer.

Всё самое интересное,интересное, познавательное,,разное

Пожалуй, самые массовые электронные часы на сегодняшний день — это Casio G-Shock. Они являются противоударными, обладают отличной водозащитой и множеством дополнительных функций: несколько часовых поясов, секундомер, таймер обратного отсчёта, календарь фаз луны, приливов и отливов. Некоторые из современных моделей умеют подключаться к компьютеру по Bluetooth.

Всё самое интересное,интересное, познавательное,,разное


Развернуть

панорамная съёмка панорамное фото фотографии много фото ...Всё самое интересное 

Ричард Сильвер. Серия вертикальных панорамных снимков церквей, Каждое изображение создается путем переплетения вместе 6-10 шотов и предлагает заглянуть в захватывающий архитектурный интерьер, в различных местах поклонения.

1ЛЧ/ t,панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

£öXr.v/< /,панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное

панорамная съёмка,панорамное фото,фото,фотография,фотографии,много фото,Всё самое интересное,интересное, познавательное,,разное


Развернуть

#Вокруг света АЭС Россия длиннопост ...Всё самое интересное 

Балаковская АЭС – самая мощная АЭС России


Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост

Балаковская АЭС — крупнейший в России производитель электроэнергии — более 30 млрд кВт·ч. ежегодно, что составляет 1/5 часть выработки всех АЭС страны. Среди крупнейших электростанций всех типов в мире занимает 51-ю позицию. Первый энергоблок БалАЭС был включен в Единую энергосистему СССР в декабре 1985 года, четвёртый блок в 1993 году стал первым введённым в эксплуатацию в России после распада СССР. 


1. Балаковская АЭС расположена на левом берегу Саратовского водохранилища реки Волги в 10 км северо-восточнее г. Балаково Саратовской обл. приблизительно на расстоянии 900 км юго-восточнее г. Москвы.

Техническое водоснабжение, что чрезвычайно существенно для водо-водяных энергетических реакторов, осуществляется по замкнутой схеме с использованием водохранилища-охладителя, образованного путём отсечения дамбами мелководной части Саратовского водохранилища.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост










2. На Балаковской АЭС эксплуатируются 4 типовых энергоблока с реакторной установкой, в состав которой входит реактор типа ВВЭР-1000 (Водо-Водяной Энергетический Реактор – 1000 мегаватт электрической мощности, корпусного типа на тепловых нейтронах с легкой водой в качестве замедлителя и теплоносителя) – это наиболее распространенный тип РУ в мире, зарубежный аналог носит аббревиатуру PWR. 
ni xoqui(goi|a6 | шоэ |ешпоГэлц оцэб Ь4,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












3. Масштабы энергоблоков можно оценить «с вертолета».

Каждый энергоблок состоит из турбинного и реакторного отделений – образуя моноблок. Бесперебойное электропитание каждого энергоблока обеспечивают по три независимых Резервных Дизельных Электрических Станции типа АСД-5600 (РДЭС – мощностью 5,6 мегаватта). 
geiio.livejoumal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост










4. Высота верхней отметки купола энергоблока – 67,5 метров.

Герметичная оболочка является локализующей системой безопасности и предназначена для предотвращения выхода радиоактивных веществ при тяжёлых авариях с разрывом крупных трубопроводов первого контура и удержания в зоне локализации аварии среды с высоким давлением и температурой. Она имеет цилиндрическую форму и состоит из предварительно напряжённого железобетона толщиной 1,2 метра. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













5. Попасть в реакторное отделение энергоблока можно только из санитарно-бытового блока спецкорпуса по переходной эстакаде. В санитарно-бытовом блоке расположены санпропускники для прохода в зону ионизирующих излучений. Здесь персонал станции полностью переодевается в защитную спецодежду. После выхода из санпропускника в Зону контролируемого доступа персонал проходит на щит радиационного контроля к дежурным дозиметристам для получения индивидуальных дозиметров.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост











6. Внутренняя дверь основного шлюза ГО на отметке +36 метров.

При работе реакторной установки на мощности гермооболочка закрыта – находится под небольшим разряжением. Для доступа оперативного персонала внутрь необходимо пройти процедуру шлюзования. Основной шлюз – сложное устройство, предназначенное для обеспечение прохода внутрь геромообъема с сохранением перепада давлений между гермообъемом и обстройкой реакторного отделения. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












7. Центральный зал в гермооболочке ГО 2-го энергоблока.

Гермооболочка выполнена в виде цилиндра внутренним диаметром 45 метров и высотой 52 м, с отметки 13,2 м над уровнем земли, где находится её плоское днище, до отметки 66,35 м, где находится вершина её куполообразного верха.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













8. Технологическая схема каждого блока двухконтурная. Первый контур является радиоактивным, в него входит водо-водяной энергетический реактор тепловой мощностью 3000 МВт и четыре циркуляционных петли охлаждения, по которым через активную зону с помощью главных циркуляционных насосов прокачивается теплоноситель — вода под давлением 16 МПа.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост














9. Спускаемся к реактору.

На Балаковской АЭС используется модернизированный серийный ядерный реактор ВВЭР-1000 с водой под давлением, который предназначен для выработки тепловой энергии за счёт цепной реакции деления атомных ядер. Регулирование мощности реактора осуществляется изменением положения в активной зоне кластеров из стержней с поглощающими элементами, стальными трубками с карбидом бора, а также изменением концентрации борной кислоты в воде первого контура. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост











10. Ядерный реактор.

Температура воды на входе в реактор равна 289 °C, на выходе — 320 °C. Циркуляционный расход воды через реактор составляет 84000 т/ч. 
Нагретая в реакторе вода направляется по четырём трубопроводам в парогенераторы.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












11. Парогенератор – это горизонтальный теплообменник с погруженной поверхностью теплообмена, предназначенный для выработки осушенного насыщенного пара с производительностью 1470т/ч. Вода из реактора поступает в коллектор и раздается внутрь на 11 тысяч трубок. Проходя по ним, она отдает тепло котловой воде второго контура и выходит через аналогичный собирающий коллектор на всасывающий патрубок главного циркуляционного насоса (ГЦН). Таким образом, парогенератор является граничным элементом между первым - радиоактивным контуром и вторым – нерадиоактивным. 
\ ge4io.liveioumal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












12. Второй контур — нерадиоактивный, состоит из испарительной и водопитательной установок, блочной обессоливающей установки и турбоагрегата электрической мощностью 1000 МВт. Теплоноситель первого контура охлаждается в парогенераторах, отдавая при этом тепло воде второго контура. 

Насыщенный пар, производимый в парогенераторе, с давлением 6,4 МПа и температурой 280 °C подается в сборный паропровод и направляется к турбоустановке, приводящей во вращение электрогенератор. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












13. Вид вглубь бокса главного циркуляционного насоса (ГЦН).

Принудительная циркуляция теплоносителя осуществляется за счёт работы четырёх главных циркуляционных насосов ГЦН-195М. Каждый из ГЦН при частоте вращения 1000 об/мин. обеспечивает прокачивание через активную зону реактора 21000 тонн воды в час.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












14. Бассейн мокрой перегрузки ядерного топлива. 

Для поддержания нормальной работы реактора необходимо выполнять перегрузку топлива. Перегрузка топлива осуществляется частями, в конце борной кампании реактора треть ТВС выгружается и такое же количество свежих сборок загружается в активную зону, для этих целей в гермооболочке имеется специальная перегрузочная машина МПС-1000. Ядерное топливо для Балаковской АЭС производится Новосибирским заводом химконцентратов. 

Все операции с отработанным ядерным топливом (ОЯТ) выполняются дистанционно под 3-х метровым слоем борированной воды. В отработавших ТВС содержится большое количество продуктов деления урана. Ядерное топливо имеет свойство саморазогреваться до больших температур и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточного тепловыделения. Обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












15. Пульт управления перегрузочной машиной МПС-1000.

Один из наиболее эффективных способов увеличения выработки электроэнергии – увеличение продолжительности кампании ядерного реактора, работы в этом направлении велись на Балаковской АЭС многие годы. С улучшением конструкции ядерного топлива переход на 18-месячный топливный цикл стал возможен и в настоящее время постепенно реализуется. Суть заключается в том, что перегрузки топлива стали осуществлять реже, чем раз в год, при полной его реализации перегрузки будут совершаться раз 1,5 года, соответственно реактор дольше работает без остановок, увеличивается его энерговыработка. 

В настоящий момент на БАЭС реализуются кампании с планируемой длительностью 420-480 эфф. суток, что является решающим переходным этапом к 18-месячному топливном циклу.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост











16. Для измерения температуры и давления теплоносителя внутри корпуса реактора используют датчики, размещенные нейтронно-измерительных каналах на траверсе блока защитных труб реактора.
gelio.llveJournal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост










17. Дефектоскописты проводят плановый контроль сварных соединений и основного металла.

Всего на станции трудятся около 3770 человек, более 60 % которых имеют высшее или среднее профессиональное образование.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост














18. Гайковерт главного разъема реактора ВВЭР-1000.

Применение гайковерта обеспечивает герметизацию узла уплотнения одновременной и равномерной вытяжкой шпилек, уменьшает временя на проведение работ по уплотнению и разуплотнению главного разъема реактора, снижает трудозатраты обслуживающего персонал и как следствие их дозовые нагрузи.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













19. Для нормального функционирования парогенератора в течение срока службы необходимо производить контроль теплообменной поверхности труб от отложений. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост











20. Для контроля состояния металла на балаковской АЭС применяется вихретоковый метод контроля (ВТК).
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост














21. Полярный кран под куполом гермооболочки.

При разуплотнении и течах первого контура происходит испарение воды, что сопровождается ростом давления под куполом гермообъема. Для снижения давления пара в него разбрызгивается холодная вода. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












22. Измерение загрязненности спецодежды в санитарном шлюзе.

В помещениях обстройки реакторного отделения организованы специальные посты дополнительного дозиметрического контроля и санитарной обработки – саншлюзы. Персонал, выходящий из зоны производства работ или расположения технологического оборудования, проходит обязательный дозиметрический контроль и при необходимости – отмывку и обработку одежды и кожных покровов для предотвращения распространения радиоактивного загрязнения в более чистые помещения постоянного пребывания персонала.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












23. Блочный щит управления.

Персонал ведет весь технологический процесс (управляет оборудованием и контролирует работу автоматики) с блочного щита управления (БЩУ).
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












24. Условно БЩУ поделен на три зоны ответственности. Первая зона находится в непосредственном оперативном ведении начальника смены блока и включает системы энергоснабжения и панели систем безопасности, вторая зона – в оперативном ведении ведущего инженера по управлению реактором – с неё осуществляется контроль работы реактора, основного оборудования первого контура и технологических систем реакторного отделения. Третья зона – в ведении ведущего инженера по управлению турбиной.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












25. Ведущий инженер по управлению турбиной одного из энергоблоков.
gelio.livqoumal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













26. На БЩУ одного энергоблока контролируется свыше 19 000 параметров.
ЛОЛ)»-,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












27. Весь пар, вырабатываемый четырьмя парогенераторами энергоблока, объединяется и подается на турбину.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













28. Машинный зал с турбогенератором.

Паровая турбина конденсационная, одновальная, четырёхцилиндровая (один цилиндр высокого давления, три – низкого давления). 
Номинальная мощность 1000МВт, частота вращения 1500 оборотов в минуту.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












29. Цилиндр высокого давления (ЦВД) предназначен для срабатывания «острого» пара, поступающего из главного парового коллектора.
gelio.llveJournal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













30. Начальное давление в корпусе 60 атмосфер, температура пара 274 градуса.
На одном валу с турбиной закреплен генератор марки ТВВ-1000, генерируемое напряжение 24000 вольт.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












31. Старший машинист в обходе на турбине.
■ gelio.llveJournal.com | gelio@inbo*.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













32.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













33. Выдача электричества.

Электрооборудование АЭС в целом мало отличается от оборудования тепловых электростанций, за исключением повышенных требований к надёжности.
gelio.llveJournal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













34. Выдача мощности Балаковской АЭС осуществляется через шины ОРУ-220/500 кВ в объединённую энергосистему Средней Волги.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












35. Эти шины являются узловыми в энергосистеме и связывают Саратовскую энергосистему с Ульяновской, Самарской, Волгоградской и Уральской. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













36. Водоем-охладитель площадью 24,1 км² — источник циркуляционного водоснабжения АЭС. 
gelio.liveJournal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












37. Здесь живут белый амур и толстолобик, необходимые для естественного биологического очищения и поддержания качества воды пруда–охладителя. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













38. Вода из охладителя по открытым подводящим каналам поступает к четырём блочным насосным станциям (БНС), располагающимся на его берегу. Эти насосные станции обеспечивают технической водой неответственных потребителей. 
gelio.livejournal.com | gelio@inbo*.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













39. Для технического водоснабжения ответственных потребителей (оборудования, в том числе и аварийного, перерыв в водоснабжении которого не допускается в любых режимах работы) используется специальная замкнутая оборотная система, включающая в себя брызгальные бассейны.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












40. Охлаждение воды происходит за счет разбрызгивания, что увеличивает площадь теплообмена.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост










41. Химводоподготовка.

На щите химводоочистки размещены приборы контроля и органы управления элементов, обеспечивающих процессы очистки и обессоливания воды, дозирование реагентов при водоподготовке и пр.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост













42. Аналитическая лаборатория предназначена для обеспечения высокой достоверности при проведении химического анализа, для обработки и накопления баз данных по химическим режимам работы энергоблоков. 
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












43. Лаборатория оборудована ионным хроматографам, рентгеновским кристалл-дифракционным спектрометром, титратором влаги, оптическим эмиссионным спектрометром с индуктивно связанной плазмой и т.д.
gelio.livejournal.com | gelio@inbox.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост












44. Обсуждается строительство второй очереди станции, состоящие из пятого и шестого энергоблока той же конструкции, что и уже действующие на станции. 
шатштшт п п п п п п пл п П gelio.llveJournal.com | gelio@inbo*.ru,Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост











45.
Всё самое интересное,интересное, познавательное,,разное,Вокруг света,АЭС,Россия,длиннопост




Развернуть

подборка фактов длиннопост ...Всё самое интересное 

То чего вы не знали о кетчупе

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

1. В среднем, каждый человек съедает около трех бутылок кетчупа в год.
2. Кетчуп рекомендован к употреблению желающим похудеть, ведь он содержит всего шестнадцать калорий на сто граммов и совсем не содержит жира.
3. Рынок продаж кетчупа превышает полтора миллиарда долларов.
4. Покупая одну и ту же марку кетчупа, Вы совершенно не гарантированно купите одинаковый кетчуп, ведь его вкусовые и питательные свойства зависят от урожаю помидоров, количества солнечных и пасмурных дней в сезоне, поэтому его можно в некоторой степени сравнить с вином.
5. Большинство марок кетчупа изготовлены из концентрированной томатной пасты, которая готовится сразу после сбора урожая помидоров и расходуется для приготовления кетчупа по мере необходимости в течение года.
6. Наиболее полезный – летний кетчуп, он чаще всего готовится из свежесобранных помидоров.
Он относится к немногим долго хранящимся без консервантов продуктам.
7. Как ни удивительно, но дети потребляют кетчупа на пятьдесят процентов больше, чем взрослые.
8. Есть страны, в которых люди не едят привычные для нас блюда с кетчупом, например, в Голландии любой скорее выберет майонез как заправку к картофелю фри.
9. В восьмидесятых годах прошлого столетия было придумано наполнять кетчупом не стеклянные, а пластиковые бутылки, это позволило использовать ее содержимое до последней капли.
10. Он является отличным источником антиоксидантов, что делает его по-настоящему полезным продуктом.
11. Были времена, когда многие люди считали кетчуп лекарством от многих болезней, а были и такие, когда он считался чуть ли не ядовитым и очень вредным продуктом.
12. Настоящий кетчуп не должен вытекать из бутылки сам по себе, для его извлечения необходимо встряхнуть бутылку.
13. Стеклянная бутылка поможет выбрать наиболее натуральный и полезный кетчуп, выбирайте кетчуп цвета, чуть более темного, чем натуральный цвет томатов, в противном случае содержание помидоров либо слишком низко либо содержание красителей слишком высоко.
14. Оригинальный кетчуп, или ke-tsiap, был создан на Востоке. Это был острый соус из засоленной рыбы, моллюсков и специй.В раннем 1700 году английские моряки обнаружили это в Малайзии, ипривезли его в Англию. Но необычные компоненты было трудно найти, таким образом было много изменений, используя ароматы более распространенных ингридиентов, таких как грецкий орех, анчоус, лимон, или даже помидоры!
15. В 1792 книга под названием Новое Искусство Кулинарии опубликовала рецепт, названный “томатный кетчуп,” но его было трудно сделать.
16. Тольков 1876 году Генри Дж. Хайнц начал выпускать его серийно, и красный соус завоевал популярность.
17. Дети едят на 50 процентов больше кетчупа чем взрослые.Компоненты в типичном современном кетчупе – помидор, уксус, кукурузный сироп или другой сахар, соль, специя и травные добавки (включая сельдерей), специи и чесночный порошок.
18. В кетчупе 25 % – сахара!Самая большая в мире бутылка кетчупа показана в Коллинзвилле, Иллинойс.
19. Построенная на водонапорной башне в 1949 году, она 58 метров высотой.Четыре столовых ложки кетчупа, имеют ту же самую пищевую ценность как весь зрелый помидор.Ластиковый бутылки, были введены в 1980 году, чтобы решить проблему кетчупа, не вытекающего из стеклянных контейнеров.


Почему на свадьбе кричат «горько»?

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Как вы думаете, почему на русских свадьбах принято кричать слово «горько», как бы давая команду молодоженам на поцелуй? Давайте вместе это выясним.
Заметим, что горевать могут родители как со стороны жениха, так и невестки, ведь некоторым мамам и папам трудно осознавать, что их чадо вступает в брак. Но и молодым порой не до смеха – пьяные гости постоянно кричат это слово, заставляя их без конца целовать друг друга.
Это было небольшое отступления. Теперь же вернемся к нашему сегодняшнему разговору. Существует несколько версий этого клича. Одна из них берет свое начало с далеких времен, когда наши предки придумали игру под названием «Горка». Суть ее в следующем: во дворе собственного дома родители невестки сооружали снежную горку среднего размера, которую заливали водой. На ее вершину забиралась невеста, а рядом с ней находились ее подруги. Жениху необходимо было пробраться к своей будущей жене через ее подруг под крики «Горка!», что бы одарить ее поцелуем. Друзья молодого человека и девушки тоже целовались.
Впрочем, есть и другая теория на этот счет. Суженая обходила гостей с подносом во время гуляний, на котором находилась чарка с горькой водкой. Те, кто испивал напиток, кричал «горько», поскольку вкус был соответствующим. Однако если гость еще и клал золотые монеты на поднос, то ему разрешалось поцеловать невесту.


Что будет с Вашим телом, если Вы выпьете Кока-Колу?

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Через 10 минут.
10 чайных ложек сахара “ударят” по вашей системе (это ежедневная рекомендуемая норма). Вас не тянет рвать, потому что фосфорная кислота подавляет действие сахара.

Через 20 минут.
Произойдет скачок инсулина в крови. Печень превращает весь сахар в жиры.

Через 40 минут.
Поглощение кофеина завершено. Ваши зрачки расширятся. Кровяное давление увеличится, потому что печень выбрасывает больше сахара в кровь. Блокируются аденозиновые рецепторы, тем самым предотвращая сонливость.

Через 45 минут.
Ваше тело увеличит производство гормона дофамина, стимулирующего центр удовольствия мозга. Такой же принцип действия у героина.

Спустя час.
Фосфорная кислота связывает кальций, магний и цинк в вашем кишечнике, ускоряя метаболизм. Увеличивается выделения кальция через мочу.

Более чем через час.
Мочегонные действия входит в игру. Выводятся кальций, магний и цинк, которые находятся в ваших костях, так же как и натрий, электролит и вода.

Через полтора часа.
Вы становитесь раздражительным или вялым. Вся вода, содержащаяся в кока-коле, выводится через мочу.


Может ли быть курение полезным?

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Кто говорит, что курение – это вред, за исключением Всемирной Организации по Здравоохранению, всех врачей и каждой медицинской ассоциации на земле?
Однако, несмотря на то, что курильщики сильнее подвержены раку, болезням сердца, эмфиземе легких и т.д., есть ряд болезней и недугов, от которых по необъяснимым наукой причинам, они однозначно защищены.
Можете назвать это лучом надежды в их почерневших легких. Хотя долгосрочное курение в значительной степени повышает риск ранней смерти, ниже представлены пять возможных положительных последствий курения.

1. Курение снижает риск развития болезней суставов
Хотя курильщики и могут разориться на регулярных покупках сигарет, они могут, по крайней мере, сэкономить на операции по замене коленного сустава. Удивительные результаты нового исследования показали, что мужчины, которые курят, находятся в зоне гораздо меньшего риска столкнуться с необходимостью хирургического вмешательства, связанного с проблемами с суставами, в отличие от тех, кто никогда не курил.
Исследование специалистов университета Аделаиды в Австралии появятся в июльском номере журнала «Артрит и ревматизм». В чем связь? Проблемы с коленями чаще всего развиваются у тех, кто страдает от ожирения или кто активно занимается бегом. Как правило, курильщики реже бегают, а их шансы поправиться гораздо ниже. Однако, после анализа возраста, веса и количества физической нагрузки ученые все еще в затруднении объяснить, почему курение все же имеет небольшой защитный эффект от остеопорозе. Вполне возможно, что никотин, содержащийся в табаке, защищает хрящевую ткань от повреждения.

2. Курение снижает риск болезни Паркинсона
Многочисленные исследования выявили невероятную обратную зависимость между курением и болезнью Паркинсона. Курильщики со стажем по непонятным причинам защищены от этого заболевания, но не потому что, что они умирают от других болезней раньше. Результаты последних исследований на эту тему были опубликованы в марте 2010 года в журнале «Неврология». Так и не сумев обнаружить причину этой связи, исследователи выявили, что количество лет, а не количество выкуренных сигарет в данном случае имело значение для защитного эффекта.
Гарвардские специалисты были одними из первых, кто предоставил убедительные данные о том, что курильщики менее склонны к развитию болезни Паркинсона. Они также обнаружили, что защитный эффект тут же начинает ослабевать после того, как человек бросает курить. Однако, почему это происходит и в чем суть этой взаимосвязи им так и не удалось понять.

3. Курение снижает риск ожирения
Курение, а именно никотин, содержащийся в табачном дыме, подавляет аппетит. Это было известно на протяжении многих веков. В начале 1920-х годов табачные компании активно пользовались этой уловкой, ориентируясь на женщин, обещая им, что курение сделает их стройнее.
Исследование, опубликованное в июле 2011 года в журнале «Физиология и поведение» (Physiology & Behavior), по сути, является одним из многих, которое заявляет, что неизбежное увеличение веса после отказа от курения является основным барьером, который не дает человеку начать здоровый образ жизни. Зависимость же от табака – это уже вторая причина.
Связь между курением и контролем за весом очень комплексная: сам по себе никотин действует как стимулятор и подавляет аппетит, а также акт курения вызывает изменения поведения, при котором человек меньше ест и перекусывает. В некоторых случаях курильщики говорят об ухудшении вкусовых качеств еды, что также сдерживает аппетит. В качестве компонента, подавляющего аппетит, никотин воздействует, по крайней мере, у мышей на часть мозга, называемую гипоталамусом.
Однако, ни один уважающий себя врач не порекомендует курение как средство избавления от лишнего веса, учитывая багаж вреда, который оно за собой несет.

4. Курение снижает риск смерти после некоторых случаев сердечных приступов
По сравнению с некурящими, среди курильщиков, у которых были сердечные приступы, по всей вероятности, более низкие показатели смертности, причем их организм лучше реагирует на два вида терапий, во время которых удаляются артериальные бляшки: фибронолитическая терапия, в основе которой лежат лекарственные препараты и ангиопластика, при которой бляшки удаляются путем хирургического вмешательства.
Однако, существует одна проблема. Причина, по которой у курильщиков случаются инфаркты в том, что сигаретный дым способствует в первую очередь росту артериальных бляшек. Таким образом, одной из теорий, объясняющей почему курильщики переносят последствия инфаркта легче, чем некурящие, является то, что любители табачных изделий, как правило, переживают свой первый инфаркт на 10 лет раньше.
Тем не менее, многие исследователи утверждают, что только возраст не может объяснить такую большую разницу в выживаемости среди людей, перенесших инфаркт, но до сих пор не было предложено ни одной достойной альтернативной теории.

5. Курение способствует лучшей работе сердечных препаратов
Клопидогрель является препаратом, который используется для предотвращения образования кровяных сгустков в организме пациентов, страдающих ишемической болезнью сердца и другими заболеваниями сердечно — сосудистой системы, ведущими к инсультам и сердечным приступам. Курение, судя по всему, способствует тому, что клопидогрель выполняет свою работу намного лучше.
Проведенные на эту тему исследования показали, что данная взаимосвязь выявляется при выкуривании не менее 10 сигарет в день. Вероятно, определенный компонент в сигаретном дыме активизирует работу белков, называемых цитохромами, которые заставляют лекарство эффективней работать.
Таким образом, мы видим, что табак все же содержит пока не выделенные химические вещества, которые обладают настоящей терапевтической ценностью.


Интересные факты о крапиве

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Крапива является любимым лакомством и средством существования некоторых видов бабочек.
Крапивные иголки содержат муравьиную кислоту, которая жгется при попадании на кожу.
Из крапивного полотна шили самые крепкие паруса. В Японии крапивный жгут в сочетании с шёлком был главным материалом в изготовлении дорогих самурайских доспехов, из одеревеневших стеблей делали щиты, а из крепчайшего крапивного волокна, кручёного и натёртого воском, — тетивы для луков.
Семейство крапивных включает около 60 родов и более тысячи видов растений. Растут они в основном в тропиках.
Самую ценную часть растения представляют собой листья. В них содержатся витамины групп С, В и К в достаточно больших количествах. Кроме того, в них же обнаружены дубильные и белковые вещества.
Молодые листья крапивы добавляют в супы, борщи и др. блюда. Употребляют в весенних салатах.
В листьях крапивы можно хранить скоропортящиеся продукты, например мясо или рыбу в жару можно обкладывать листьями, чтобы оно не испортилось.
Ежегодный «Фестиваль крапивы» проводится с 2002 года в селе Крапивна Щёкинского района Тульской области. Крапива изображена на гербе этого села.
В пищевой промышленности из крапивы делают абсолютно безвредный зеленый краситель.
Крапива не зря входит в состав большинства шампуней, поскольку прекрасно укрепляет волосы. Отваром крапивы можно полоскать голову после мытья и не смывать.
Крапиву нельзя есть беременным и людям с сердечными заболеваниями.
В Англии из крапивы делают вино. Чтобы получить 3 тыс. литров вина требуется всего 40 кг листьев этого растения.
Тропические виды крапивы ужалить могут довольно болезненно, а от прикосновения к некоторым из них можно просто умереть.
Чемпионат по поеданию крапивы ежегодно проводится в деревушке Маршвуд в Англии уже более 20 лет, с тех пор как два посетителя местной лавки поспорили, кто больше съест жалящих листьев.
Развернуть

Марсианин Фильмы киноляпы длиннопост ...Всё самое интересное 

Научные ляпы в фильме «Марсианин»

Всё самое интересное,интересное, познавательное,,разное,Марсианин,Фильмы,киноляпы,длиннопост

В космическом блокбастере Ридли Скотта «Марсианин» рассказывается, как выживает брошенный на Красной планете астронавт. Главную роль сыграл Мэтт Дэймон. «Лента.ру» посмотрела фильм и разобралась, где в нем проходит грань между наукой и фантастикой.

Послуживший основой для «Марсианина» одноименный роман Энди Уира изобилует множеством технических подробностей. Большинство из них в фильме были опущены, а в качестве экспертов Ридли Скотт привлек специалистов из НАСА, среди которых — директор агентства по планетарным наукам Джеймс Грин и Дэйв Лавери из отдела по изучению Марса.

Для съемочной группы проводились экскурсии по объектам НАСА. В частности, по Космическому центру имени Джонсона в Хьюстоне и Лаборатории реактивного движения в Пасадене. Кроме того, создатели фильма присутствовали на первом пуске марсианского корабля Orion.

Съемки «Марсианина» проходили в павильонах в Будапеште, где были построены декорации миссии Ares III. Там же герой Мэтта Дэймона, астронавт Марк Уотни, выращивал свой огород. В качестве администрации НАСА использовались интерьеры футуристического здания торгово-развлекательного центра Balna.

Роль Марса в фильме исполнила расположенная в Иордании пустыня Вади Рум, известная также как Лунная долина.

Буря

По сценарию герой Мэтта Дэймона остается один на Марсе из-за мощнейшей бури: он получает ранение и теряет сознание, а остальные пять членов экипажа миссии Ares III в спешке покидают Красную планету.

В НАСА не отрицают, что пылевые бури — одна из неприятных особенностей Красной планеты. Исследователи ежегодно наблюдают на Марсе пылевые бури, охватывающие районы размером с Евразию и длящиеся неделями. Бывают бури и посильнее. Глобальные пылевые бури формируются из умеренных в среднем раз в три марсианских года, то есть примерно раз в 5,5 земных лет.

Но умеренная пылевая буря не сможет даже растрепать волосы астронавта, если он решится снять скафандр. И даже глобальная буря, скорее всего, не в состоянии опрокинуть или разрушить какое-либо оборудование.

Дело в том, что скорость самых сильных ветров на Марсе не превышает 27 метров в секунду. Земные ураганные ветры как минимум в два раза быстрее. Кроме того, плотность марсианской атмосферы в сто раз меньше земной. То есть частицы пыли в атмосфере Марса переносятся ветром, но разрушительной силой не обладают. И все же пылевые бури могут создать определенные проблемы.

Некоторые частицы пыли несут электростатический заряд и могут прилипать, например, к иллюминаторам и механическим деталям научного оборудования. Нейтрализация электростатических зарядов и устранение пылевых загрязнений — одна из основных задач, которую решают инженеры, проектирующие оборудование для исследования Марса.

Кроме того, даже слабые пылевые бури способны загрязнить солнечные батареи и значительно снизить их эффективность. В «Марсианине» это учли: астронавт ежедневно чистит солнечные панели от пыли.

Чаще всего глобальные пылевые бури на Марсе происходят в летнее время в южном полушарии. Орбита Марса более вытянута по сравнению с Землей: это означает, что в северном полушарии лето долгое, но прохладное, а зима короткая и мягкая, тогда как в южном полушарии лето короткое, но теплое, а зима долгая и суровая. Первая глобальная буря наблюдалась учеными в 1909 году, последняя — в 2007 году. Высадившиеся на Красной планете в 2004 году роверы Spirit и Opportunity испытали на себе этот разгул стихии. В результате они на несколько недель прекратили свою работу, перейдя в режим выживания.

Картофель


Герой Мэтта Дэймона на Марсе вынужден был в буквальном смысле добывать себе пропитание. Для этого он построил теплицу, где собрал первый на Красной планете урожай картофеля. В качестве удобрения использовал собственные экскременты, воду получал из водорода неиспользованного ракетного топлива, кислород — из углекислого газа.

Астробиолог Майкл Мамма из НАСА полагает, что ничего фантастического в этом сюжетном повороте нет. Проблемы могут возникнуть из-за ограниченного объема удобрений и отсутствия эффективного способа извлечения углекислого газа из марсианской атмосферы.

На Международной космической станции (МКС) уже проводятся успешные опыты сельскохозяйственного характера. Так, в эксперименте Veggie на МКС при помощи светодиодов (красного, синего и зеленого) астронавты НАСА вырастили салат. А установленная на МКС Oxygen Generation System производит кислород из выдыхаемого человеком углекислого газа электролизом.

Не вызывает сомнений, что подобное можно повторить и на Марсе. Вопрос лишь в масштабах такого сельскохозяйственного производства и его эффективности.

Радиация

От космических лучей Землю защищает магнитосфера с ее радиационным поясом, которой у Марса нет. Герой Мэтта Дэймона провел на Красной планете 500 сол — так называются марсианские сутки, равные 24 часам и 40 минутам. И ничуть не пострадал от космической радиации. Возможно ли это?

Магнитосфера вокруг Земли характеризуется особой геометрией: заряженные частицы (например, протоны и электроны) взаимодействуют с солнечным ветром и магнитным полем Земли. Радиационный пояс спасает планету от губительной солнечной радиации. Радиационные пояса есть и у наших соседей по Солнечной системе, например, у планет-гигантов — у Сатурна, Юпитера, Нептуна и Урана.

Когда три астронавта миссии Apollo 11 направлялись к Луне, излучение не почувствовалось, поскольку космический корабль достаточно быстро пролетел через пояс и продолжил путь в пространстве с относительно невысоким уровнем радиации. За время путешествия на Луну американцы получили дозу радиации от 1,6 до 11,4 миллигрея, что намного меньше максимально допустимого уровня (50 миллигрей), установленного в США для тех, кто работает с радиоактивностью.

США исследуют космическую радиацию для путешествий к Марсу
Российский эксперимент «Матрешка-Р», проведенный на борту МКС, показал, что дозы радиации, получаемые внутренними органами космонавтов на орбите, в разы меньше, чем думали ранее: при выходе в открытый космос — на 15 процентов, а внутри станции — в два раза меньше того, что показывает индивидуальный дозиметр в нагрудном кармане космонавта.

Опыты на борту МКС были начаты в 2004 году и проводились на манекенах с установленными у них внутри датчиками ионизирующего излучения. Модели изготавливались из полиуретана — материала, поглощающего радиацию примерно так же, как тело человека.

Даже с учетом этих данных возможная доза излучения для путешественников на Марс все еще слишком высока, и специалистам придется искать пути снижения радиации или сокращения срока перелета. Кроме того, свое исследование ученые проводили на борту МКС, лишь задевающей края радиационного пояса Земли и в целом защищенной от космической радиации.

Кроме естественной радиации, астронавт Уотни подвергается воздействию излучения от радиоизотопного термоэлектрического генератора (РИТЭГ), с помощью которого согревается при путешествиях на ровере. РИТЭГ преобразуют тепло естественного радиоактивного распада плутония-238 в электрическую энергию. На Curiosity РИТЭГ генерирует около 110 ватт электроэнергии — примерно столько же, сколько потребляет обычная лампочка накаливания.

Расчеты показывают, что это безопасно. В НАСА уверены: естественный радиационный фон (космическое излучение) на поверхности Марса сильнее, чем у РИТЭГ, поэтому генератор почти не влияет на общую радиационную безопасность.

Агентство применяет РИТЭГ уже более 40 лет в рамках многих проектов, начиная от лунных миссий Apollo и заканчивая ровером Curiosity. Специалисты намерены задействовать их и в предстоящей миссии Mars 2020.

В фильме аппарат Hermes, доставивший астронавтов на Марс и обратно на Землю, напоминает межпланетный корабль Discovery One из фильма Стэнли Кубрика «Космическая одиссея 2001 года». Тут тоже есть гравитационное колесо, вращающееся с необходимой для создания искусственного притяжения скоростью и позволяющее астронавтам сохранять свою физическую форму.

Руди Шмидт из Европейского космического агентства, выступивший одним из технических консультантов фильма, не исключил возможность использования подобных устройств в будущем. По его словам, гравитационное колесо было испытано в 1970-х годах на первой национальной американской орбитальной станции Skylab.

Чтобы сохранять костную массу и мышечный тонус, астронавтам просто необходимо подвергаться воздействию силы тяжести. Теоретически гравитационное колесо может выработать силу, вдвое меньше земного притяжения, что вполне достаточно для поддержания здоровья.

Взлет и падение «Скайлэб» — единственной американской орбитальной станции
На корабле Hermes установлены ионные двигатели. В настоящее время эти перспективные агрегаты находятся в центре внимания исследователей из НАСА.

Ионные двигатели, предназначенные для исследования дальнего космоса, создают реактивную тягу при помощи ионизированного и разогнанного до высоких скоростей в электрическом поле газа. Такие агрегаты уже действуют, например, на станциях Dawn и New Horizons. Они отличаются малым расходом топлива и долговечностью, но у них сравнительно низкая тяга.

НАСА в рамках проекта NEXT (NASA’s Evolutionary Xenon Thruster) разрабатывает семикиловаттный ионный двигатель, который, возможно, найдет применение в пилотируемых миссиях.

Скафандр

Масса скафандра героя Дэймона более 20 килограммов, толщина — несколько миллиметров. Сейчас таких скафандров нет, однако авторы фильма не скрывают, что в этом вопросе руководствовались исключительно эстетическими соображениями.

В США состоялся испытательный пуск многоразового космического корабля Orion
Тем не менее создание скафандра для путешествий в далекий космос возможно уже сейчас. Для этого необходимо доработать систему внутреннего давления и решить технические проблемы, связанные с подвижностью и тепловым обменом.

Внутри обычных скафандров создается внутреннее давление воздуха, благодаря чему человек защищен во время выхода в открытый космос.

Другой тип скафандров — облегающий костюм. Такие образцы разрабатываются, например, в Массачусетском технологическом институте, однако об их использовании пока говорить рано.

Топографическая точность

Марсианские пейзажи, показанные в фильме, напрямую взяты из данных, полученных станциями и роверами НАСА, исследующими Красную планету. В преддверии выхода «Марсианина» на экраны агентство даже обновило интерактивную карту Марса, добавив детализацию ландшафтов, показанных в фильме.

Так, например, теперь можно рассмотреть локации, связанные с Ацидалийской равниной и кратером Скиапарелли.

Путешествие на Марс в голливудском фильме сопряжено с технологическими трудностями, которые вполне можно преодолеть.

В этом, по всей видимости, и заключается главное отличие нового фильма от «Соляриса» Андрея Тарковского и «Космической одиссеи 2001 года» Кубрика, где основное внимание занимали экзистенциальные вопросы космических путешествий и существования инопланетного разума.

Развернуть

это интересно интересные факты длиннопост под катом продолжение ...Всё самое интересное 

Мифы о самураях

Всё самое интересное,интересное, познавательное,,разное,это интересно,интересные факты,длиннопост,под катом продолжение

Большинство из нас узнало о самураях из коротенького параграфа в библиотечном учебнике зарубежной истории. Голливудские же режиссеры раскрасили эту картинку широкими идеалистично-сопливыми мазками. В результате большая часть из нас представляет самурая кем-то средним между идеальной машиной для убийств и смазливо-проникновенным Томом Крузом в фильме «Последний самурай». Сегодня будем рубить правду-матку о самураях.
Миф 1. Самураями могли становиться только люди знатного происхождения
Самураи, как правило, были довольно бедны. Каждый самурай принадлежал своему господину и жил немногим лучше обычных крестьян. Некоторым все же удавалось достичь определенного уровня богатства, однако самурай, как и прежде, оставался всего лишь вассалом своего хозяина. Более того, большинству самураев, дабы прокормить свою семью, приходилось возделывать землю наравне с прочим крестьянским населением.
С японского слово «самурай» переводится как «человек, который служит». Во время войны большая часть самураев была обычными рядовыми солдатами, а не военачальниками, отдающими приказания.

Миф 2. Самурай готов в любую минуту пойти на смерть ради своего господина
Фильм «Последний самурай» овеял образ самурая неким героически-романтичным флером. В жизни же все было куда более прозаично. Во время междоусобных войн множество самураев переходило на сторону то одного, то другого господина. Если в результате таких «разборок» мелких феодалов, самурая чем-то не устраивал его господин, он переходил на сторону другого. Без угрызений совести и харакири.
Однако, приказы своего господина он был обязан выполнять беспрекословно (в том числе и убить себя либо пойти вдесятером против тысячной армии). Кстати, последнее – довольно частый способ избавиться от неугодного самурая.

Миф 3. Единственным оружием самурая был меч
На самом деле это не так. С одним мечом далеко не уедешь. Многие самураи еще и мастерски владели луком и техникой рукопашного боя. Кстати, не все из них были такими уж совершенными бойцами. Нет, среди них, конечно, были и настоящие мастера своего дела, однако далеко не все.
Миф 4. Правительство Японии уничтожило самураев как класс
Описанная в фильме «Последний самурай» история о притеснениях самураев как класса –очередной прием по выдавливанию слезы у зрителей. Дело в том, что после объединения Японии практически прекратились войны. И самураи, как класс, остались не у дел. Содержать их стало незачем, да и не выгодно. Вот и пришлось самураям срочно переквалифицироваться в торговцев либо земледельцев. Процесс этот происходил постепенно сам собой, западная цивилизация в этом не участвовала.

Миф 5. Самурай отличается невиданным для обычных людей благородством
Как и любые другие войны, к тому же выходцы не из знатных родов, самураи имели довольно типичный для того времени склад ума. Да, у них существовал свой кодекс чести, которому они следовали в бою, однако они относились крайне презрительно ко всем, кто был ниже их по социальному положению. Своих врагов, равно как и низших по классу соотечественников, саумраи считали чем-то вроде животных. Самурай спокойно мог обманывать, предавать, насиловать, если это не затрагивало честь его господина.
В общем, самураи были не столь благородны и романтичны, как нам их обрисовала фабрика звезд. Военное время требовало от них поведения солдат, которое редко отличается исключительным благородством.

а есть ли сейчас самураи?? конечно есть))


Загадочный Тадж-Махал

Всё самое интересное,интересное, познавательное,,разное,это интересно,интересные факты,длиннопост,под катом продолжение

Во многих туристических путеводителях говорится, что после свержения Шах-Джахан из окон темницы многие годы до смерти печально любовался своим творением — Тадж-Махалом. Обычно в этих историях упоминается Красный форт — дворец Шах-Джахана, построенный им в зените правления, часть покоев которого сын Джахана и Мумтаз-Махал -Аурангзеб превратил в роскошную тюрьму для отца. Однако здесь публикации путают делийский Красный форт (в сотнях километров от Таджа) и Красный форт в Агре, также построенный Великими Моголами, но раньше, и который действительно находится рядом с Тадж-Махалом. Шах-Джахан, согласно индийским исследователям, содержался в делийском Красном форте и оттуда не мог видеть Тадж-Махала.
Очень похожа на Тадж-Махал и по могольскому происхождению и по внешнему виду гробница Хумаюна в Дели. Эта усыпальница могольского императора также построена как знак великой любви — только не мужа к жене, а жены к мужу. Несмотря на то, что гробница Хумаюна построена раньше, и Джахан при строительстве своего шедевра ориентировался на архитектурный опыт усыпальницы Хумаюна, она малоизвестна по сравнению с Тадж-Махалом.
Тадж-Махал – это не отдельное архитектурное сооружение, это целый комплекс, расположенный на прямоугольном участке земли размером 580 м х 305 м и ограниченный с севера и юга двумя продолговатыми секциями. В центре внимания находится белая мраморная могила, которая стоит на квадратной платформе — симметричном здании со сводчатым залом, арочным дверным проемом и большим куполом на вершине. Основная структура Тадж-Махала представляет собой большой куб с закругленными гранями. Архитектурный дизайн Тадж-Махала полностью симметричен, в каждом углу постамента, окружающего могилу, возвышаются четыре минарета. В главном зале мавзолея находятся пустые гробницы Мумтаз-Махал и Шаха-Джахана, а места их захоронения расположены ниже. Мечеть из красного песчаника с западной стороны могилы и пансион Mehman-Khana с восточной стороны образуют прекрасный цветовой контраст, приятный для глаз. Внутренняя и наружная части Тадж-Махала являются изысканным образцом искусства полихромной инкрустации, доведенного до совершенства.
В южной части комплекса находится передняя площадка с главными воротами. На ней также расположены могилы двух других королев Шаха-Джахана – Акбарабади Бегум (Akbarabadi Begum) и Фатехпури Бегум (Fatehpuri Begum). Юго-восточный и юго-западный углы называются «Saheli Burj один» и «Saheli Burj два» соответственно. Комплекс заложен вокруг сада площадью 300 кв.м., выдержанного в стиле Charbagh («четыре сада»). Сад разделен тропами на четыре равных секции. Эти четыре секции также подразделены приподнятыми тропами на шестнадцать опущенных вниз клумб, что очень украшает общий вид. В центре сада находится мраморный бассейн, в котором можно увидеть прекрасное отражение Тадж-Махала.
Главным проектировщиком мавзолея Тадж-Махал был Устад Ахмад Лахаури (Ustad Ahmad Lahauri).
Каллиграфическая надпись, найденная в Тадж-Махал, создана цветистым тулутским шрифтом работы персидского каллиграфа Аманата Хана (Amanat Khan), который поставил свою подпись на нескольких панелях.
На боковых сторонах могилы Мумтаз-Махал стоят каллиграфические надписи девяноста девяти имен Бога.
На могиле Шаха-Джахана написано: «Он ушел из этого мира в торжество Вечности ночью двадцать шестого числа месяца Раджаб 1076 года Хиджри».
Во время индийского восстания 1857 года Тадж-Махал находился под угрозой разрушения от рук британцев, которые выковыряли драгоценные камни с его стен.
В 19-м веке британский вице-король Лорд Керзон (Lord Curzon) объявил о начале проекта восстановления Тадж-Махала, который был завершен к 1908 году. В дизайне газонов и сегодня прослеживается стиль британской реконструкции.
С 28-ого ноября 2004 года разрешено ночное посещение Тадж-Махала: мавзолей открыт пять ночей в месяц (ночь полнолуния и по два дня до и после неё), кроме пятницы и месяца Рамзан.
Если Вы хотите посетить Тадж-Махал со своей второй половиной, рекомендуем побывать там в полнолуние, когда он открыт для ночного посещения. Красота безмятежно белого сооружения, купающегося в волшебном лунном свете, останется в вашей памяти на всю жизнь. Но не поймите нас превратно, вы полюбите Тадж-Махал с первого взгляда в любое время суток. Тадж-Махал соблазнит вас своими золотыми украшениями и замысловатыми резными фигурками на древнем мраморе, он ошеломит вас красотой окружающих его цветов и зеленой растительности, но, прежде всего, он уведет вас в глубину истории, даря незабываемые впечатления, которые вы будете всегда хранить в своем сердце…


История кед

Всё самое интересное,интересное, познавательное,,разное,это интересно,интересные факты,длиннопост,под катом продолжение

В конце 19 века, в США компанией «U.S. Rubber Company» были разработаны новые модели спортивной обуви на резиновой подошве с матерчатым верхом, выполненным из прочной парусиновой ткани, для которых было выбрано название Keds. Торговая марка Keds (от слова «подросток» — «kid») почти в течение 70 лет ассоциировалась со спортивной обувью.
Для изготовления обуви использовался новый тогда патент вулканизации, от компании Goodyear. Именно тогда стремительно развивалась игра с мячом «Баскетбол». Нужна была специальная обувь. В 1917 году появились первые черные кеды фирмы Converse.
Три гиганта спортивной обуви Nike , Reebok и Adidas неизменно затмевали Converse. Единственных козырем компании оставалась поддержка Национальной сборной США по баскетболу, для которой компания поставляла обувь.
Однако в 2003 году положение резко изменилось. Спортивная марка Nike заключила с Converse договор о взаимном сотрудничестве. В раскрутку бренда вложили 305 миллионов долларов, что крайне благоприятно повлияло на его дальнейшую судьбу.
Хиппи ходили в кедах в знак протеста против дорогой спортивной и прочей обуви.
В виндсерфинге кеды одеваются поверх резиновых носков гидрокостюма.
В СССР кеды китайского производства считались элитными, поскольку были хорошего качества и практически не рвались.


Интересное об Италии и итальянцах

Всё самое интересное,интересное, познавательное,,разное,это интересно,интересные факты,длиннопост,под катом продолжение

Одним словом, Италия – это другая реальность. Польша, Литва, Россия, Украина, Белоруссия – все это примерно одинаково по ментальности, особенностям поведения и стилю жизни. Италия, а речь пойдет о Риме, живет иначе. Жизнь в Риме начинается где-то в 8 утра и заканчивается в 9 вечера. Уже в 6-7 вечера закрываются магазины, после девяти работают только бары. Не успел что-то купить – жди утра. На улице в это время только туристы и афроитальянцы (хз, как тут называют нафталинов).
Самый большой шок вызывают женщины в сапогах в 25-градусную жару. Реально, каждая третья ходит в теплой обуви, нередко с меховым подбоем. Глядя на это, невольно задумываешься о сбыте присыпки для ног в городе. Мужчины не отстают – носят теплые куртки, аляски, кожаные пальто. В футболках и шлепках шастают только туристы.
Чай тут пьют только туристы. Даже не все баристо понимают, что нужен именно чай, зато кофейная карта даже в самом замшелом баре включает 10-15 сортов кофе.
В магазине может быть два стеллажа с томатной пастой: густой, жидкой, со специями, такой, сякой и т.д. Но найти томатный сок нереально. Нет здесь и овощных соков, почти нет яблочного сока. Откровенно говоря, соками здесь называют в основном разбавленные напитки. Превалируют соки: грушевый и цитрусовые. Почему-то часто попадается такая смесь: апельсин, мандарин и морковь.
Кефира тоже нет, зато полно сливок для кофе: от полулитра до литровых упаковок самых разных фирм. Но кефира нет. Хлеба тоже в привычном понимании здесь нет. Народ кушает что-то похожее на багет: жесткая корочка и очень мягкий мякиш. Такую булочку (а их много разных размеров и форм) режут пополам, закидывают внутрь нарезку из колбас, ветчины и сыра. Т.е. вы поняли, масло тут тоже не в чести.
Билет в метро работает в одну сторону. Т.е. если вы активировали билет, но по какой-то причине не попали за периметр, то второй раз уже по нему не пройти – будь он хоть сто раз многоразовый – вам надо обязательно «выйти» для деактивации билета и зайти заново. Мы в первый день здорово на этом попались. В Риме всего две ветки метро. Обе не доходят даже до краев города. И вдоль линий метро можно пересечь город пешком часа за два.
Про то, что итальянцы жрут преимущественно пышную пиццу – полная фигня. НИГДЕ, ни в центре, ни в закоулках, ни вдалеке от туристических маршрутов не подают пышную пиццу – везде это тонкий сильно прожаренный корж. Если будете в Риме – заказывайте круглую пиццу, она дороже, но на двоих стоит почти также, как слайсы (куски), а вкуснее в разы. Если вы нашли место, где на поддонах лежат слайсы – бегите прочь. Это будет подогретое суховатое говно.
Паста в пастериях – это полный фуфел. Холодные мерзкие макароны под соусом. Ищите, где не подают уже готовую пасту.
Музеи в Риме – это профанация и выкачка денег из туристов. Один Эрмитаж по экспозиции превосходит все музеи Рима вместе взятые. Музей по-римски – это 100-150 экспонатов за 5-15 евро. Если вы посетили Колизей, Пантеон, Аттику и Ватикан – больше в музеи ходить не стоит.
Пиво в Италии есть. Но 90% – это Перони, местная Балтика, только из трех сортов: обычное (типа троечки), национале (типа семерки) и крепкое (типа девятки). Есть еще примерно пять других сортов от мелких пивоварен и все. Зато вина – всякого разного, и оно не делится на привычные нам полусладкое, полусухое и т.п. Понятия не имею, как итальянцы его различают. Само вино довольно терпкое. Терпкий тут и лимонад и вообще любые напитки. Любовь к большому количеству аскорбиновой кислоты чувствуется повсеместно.
Чумазых здесь много, но жить они не мешают. Попрошайничают на каждом углу и улице, торгуют всяким фуфлом, но если сказал «нет», то отходят. Вероятно, причиной здесь – большое количество местных полицейских. Эти товарищи – местные гиды для туристов и вообще сама комплиментарность: например, мы переходили дорогу и мент на машине, пропустил нас, хотя мы только начали движение, он имел преимущество по движению и он перегородил полулицы. И пока мы не перешли дорогу, улица стояла.
Здесь можно фотать ВЕЗДЕ: на улице, в музеях, кафе, магазинах, туалетах. Всем пофиг. Единственное, иногда просят снимать без вспышки, чтобы картины или шпалеры не подвергались лишнему облучению. Единственное место где фотать нельзя – это сикстинская капелла, но и то туристы щелкали и служители их окрикивали, но никаких мер не принимали.


Нормофилия — это сексуальное возбуждение от соблюдения правил

Всё самое интересное,интересное, познавательное,,разное,это интересно,интересные факты,длиннопост,под катом продолжение

Если вы привыкли подчиняться во всем, то эта парафилия как раз для вас. Нормофилия — это сексуальное возбуждение от соблюдения социальных норм поведения, какими бы они ни были. Нормы поведения диктуют обычаи, законы и религия.
До какой степени люди готовы подчиняться правилам в своей сексуальной жизни? Зоологи утверждают, что самки многих видов копируют поведение других самок, включая и поведение во время спаривания. Например, куропатки-самки предпочитают спариваться с самцом, который только что спаривался на их глазах с другими самками. Самки рыбок гуппи также спариваются с наиболее популярным самцом, даже если он не самый крупный (обычно это главный критерий выбора).
Любопытное исследование, проведенное недавно учеными из университета Кентукки, показало, что и люди, особенно женщины, подвержены стадному инстинкту в своем поведении. Стоит женщинам услышать о том, что данный мужчина пользуется успехом среди женщин, как у них сразу же повышается интерес к нему. Ее желание встретиться с ним увеличивается в 75% случаев. Надо же выяснить, чем это он так хорош!
Развернуть

подборка фактов длиннопост ...Всё самое интересное 

Что такое похмелье?

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Как считают медики, каждый человек, который употребляет более 1 л алкоголя в месяц, становится на путь алкоголизма. Нормальная доза алкоголя на месяц – не более 300 мл. Известно, что самая распространенная головная боль – это боль после принятия алкоголя. Таким недугом страдает больше четверти взрослого населения России.
Подвержены этой проблеме те, кто регулярно потребляет алкогольные напитки, содержащие более 12% этилового спирта. Хотя многие уверены в том, что головная боль не зависит напрямую от количества выпитого накануне алкоголя.
Прежде всего, боль возникает вследствие отщепления молекул воды от органических и неорганических соединений. Алкоголь вызывает обезвоживание организма, поскольку человек вынужден чаще ходить по маленькому. Кроме этого, все алкогольные напитки влияют на печень, производящую в этот момент меньше глюкозы. Глюкоза же является основным энергетиком клеток в организме, а мозг чувствует дефицит глюкозы при ее недостатке.
Вообще алкогольные напитки имеют прямые и косвенные пути для пробуждения головной боли. Такая боль обусловливается не столько самим действием алкоголя, который угнетает центральную нервную систему человека, сколько продуктами его расщепления, а также веществами, содержащимися в спиртных напитках.
Головная боль появляется после излишнего потребления алкоголя, расширяющего кровеносные сосуды головного мозга и окружающих тканей. Однако чаще всего головную боль спровоцировать могут дешевые сорта вин и различные суррогаты алкоголя.
Можно ли как-то избежать этой проблемы? С целью предотвращения головной боли рекомендуется закусывать всегда только жирной едой, которая поможет удержать всасывание алкоголя в кровь. Жирную еду следует чередовать со сладким: это дает профилактику снижения количества глюкозы в крови.
Помимо этого необходимо предпочитать светлые алкогольные напитки, поскольку окрашенные вызывают большую головную боль по сравнению с напитками, которые не содержат красителей. Во время потребления алкоголя следует отказаться от курения, понижающего снабжение головного мозга кислородом. Пить алкоголь следует неторопливо: это поможет дезактивировать его.
Если все же головной боли избежать не удалось, то необходимо утром выпить большое количество воды, поесть содержащую много белков и углеводов пищу, яйца всмятку и тосты. А самый простой и удобный способ избежать головной боли при похмелье – это просто воздержаться от принятия алкогольных напитков.


Почему не делают мандариновый сок?

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Какой сок самый популярный в нашей стране? Либо апельсиновый, либо яблочный. А вот мандариновый в продаже не встретишь. Почему?
Начнем с описания мякоти плодов мандарина. Здесь содержатся органические кислоты, сахара, уйма витамина C, клетчатка, пектиновые вещества, фитонциды, гликозиды, минеральные соли, флавоноид гесперидин, желтые и оранжевые пигменты, среди которых есть и каротин. Плоды рекомендуется употреблять в осенне-весенний период, когда организм испытывает недостаток витаминов, поскольку они повышают иммунитет, улучшают обменный процесс, стимулируют аппетит. Мандарины советуют кушать при лечении бронхита и астмы, при заболеваниях желудочно-кишечного тракта, а также при дизентерии. Сок же из этого чудесного фрукта обладает еще большей пользой, однако он не распространен в нашей стране.
Причины банальны. Сейчас его можно встретить в пластиковых пакетах. Однако этот напиток не обладает никакой ценностью для организма, ведь что бы получить витамины и полезные вещества, нужен только свежевыжатый сок. Вот только и здесь есть проблема – он долго не может храниться, то есть сделал – и сразу выпил. Несмотря на кажущуюся сочность плодов, в действительно жидкости из них получается не так уж и много, а это сильно влияет на стоимость получившегося продукта. В итоге стоимость сока оказывается отнюдь немаленькой. Кроме того, по вкусу напиток понравится далеко не каждому, в отличии от того же апельсинового или яблочного соков.


Если бы человек обладал орлиным зрением?

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Если бы человек обладал таким же зрением, как и орел, то он смог бы с высоты 10-этажного здания увидеть, как муравей ползет по земле, вы смогли бы разглядеть выражения лиц баскетболистов, сидя на самых дальних местах в зрительном зале. Объекты, находящиеся непосредственно в поле вашего зрения, были бы очень ярко окрашенными, показывая немыслимое количество оттенков.
Чем больше ученые узнают об орлином зрении, тем более удивительным оно им кажется. Благодаря развивающимся технологиям, некоторые преимущества их зрения со временем могут испытать и люди.

Орлиное зрение
Орлы и другие хищные птицы могут видеть в 4-5 раз дальше, чем обычный человек. Исследователи проводили специальные эксперименты для того, чтобы протестировать зрение орлов: птицы должны были пролететь по длинному туннелю в сторону двух экранов телевизора. Один из экранов показывал красивый рисунок, поэтому птицы, естественно, обращали внимание на него, исследователи же, в свою очередь, проверяли остроту их зрения, измеряя расстояние, с которого орлы начинали лететь в правильном направлении.
По словам Уильяма Ходоса (William Hodos), выдающегося профессора университета штата Мэриленд, изучавшего остроту зрения птиц с 1970 года, две особенности глаз орлов способствуют такой остроте их зрения. Во-первых, их сетчатка более плотно покрыта конусообразными клетками, которые различают светлые оттенки, тем самым это помогает им различать более мелкие детали. В данном случае можно провести параллель с камерой: чем выше плотность пикселей, тем сильнее разрешающая способность камеры.
Во-вторых, их глаз устроен таким образом, что он может обнаруживать больше света, чем человеческий. «Наши клетки, которые обнаруживают свет, лишь немного выпуклые, клетки же орлиного глаза имеют очень большую выпуклость. Некоторые исследователи полагают, что благодаря этому, глаз работает как телеобъектив, что и придает ему дополнительное увеличение поля зрения», — говорит Ходос.
Более того, орлы, как и все птицы, обладают сильным цветовым зрением. Они видят цвета более яркими, чем мы, они могут различать больше оттенков, также они видят ультрафиолетовые лучи, эта способность у них развилась для того, чтобы помочь распознавать отражающую эти лучи мочу мелкой добычи. Однако, нет никакой возможности узнать, как выглядят эти цвета, а также цвет ультрафиолета. «Это то же самое, что попытаться объяснить слепому от рождения человеку, как выглядит красный или любой другой цвет», — продолжает Ходос.

Жизнь с орлиным зрением
Орлиное зрение не изменит то, как мы видим большинство окружающих нас ежедневных вещей. То есть, оно не повлияет на нашу способность читать с экрана компьютера, а также найти молоко в переполненном холодильнике, однако, в данном случае, мы будем воспринимать мир и использовать наши глаза по-другому. У нас появится новая сила и новые полномочия: мы сможем использовать появившуюся возможность для охоты.
Помимо того, что мы смогли бы видеть дальше и воспринимать цвета четче, у нас почти в два раза увеличилось бы поле зрения. Обычно, человеческое поле зрения – это обзор на 180 градусов, орлиный обзор – это 340 градусов, что обеспечило бы преимуществами в самообороне и в охоте. С орлиным зрением мы бы постоянно поворачивали свои головы. Чтобы найти добычу или любой другой интересующий нас объект, нужно постоянно периодически поворачивать голову в сторону, что сместить «телеобъектив» в поле зрения. После обнаружения объекта, в дело вступает стереоскопическое зрение (объединение точек зрения обоих глаз для того, чтобы измерить расстояние) с целью калибровки скорости движения к объекту.
Однако, охотничье мастерство, все же сопровождается некоторыми недостатками. «Большая часть объема мозга птиц посвящена визуальной обработке информации, чего нельзя сказать о других животных, вероятно из-за этого, у них не очень хорошо развито чувство обоняния и вкуса», — говорит Ходос. Трудно сказать, как в таком случае работал бы когнитивный процесс у человека. «Судя по всему, у птиц есть области, которые кажется, работают как кора головного мозга (отвечает за память, язык и сложные мысли), но это спорный вопрос». Однако, с точки зрения их способности решать проблемы они вполне соответствую тому, на что способны большинство млекопитающих. У многих птиц превосходная память.


Самая большая звезда

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

VY Большого Пса (лат. VY Canis Majoris, VY CMa) — звезда в созвездии Большого Пса, гипергигант. Является, возможно, самой большой известной звездой и одной из самых ярких. Расстояние до VY Большого Пса составляет примерно 1500 парсеков (5000 световых лет).
Радиус звезды учёные в 2005 году определили от 1800 до 2100 радиуса Солнца. Диаметр этого сверхгиганта составляет порядка 2,5 — 2,9 миллиарда километров. Если сравнить Солнце с VY Большого Пса, то оно будет невероятно крошечное, так как при замещении Солнца VY Большого Пса звезда бы поглотила в себя все планеты и достигла бы орбиты Сатурна. Чтобы облететь всю звезду по кругу, даже свету потребовалось бы 8 часов. Основное излучение звезды происходит в инфракрасном свете.
О свойствах звезды идут противоречивые споры. Одна из точек зрения — что эта звезда очень большой красный гипергигант. Другая — что это обычный большой красный сверхгигант, только очень большой, с размерами в 600 раз больше солнечного, а не в 2000. В этом случае его расширение будет продолжаться и дальше.


Как появилась жевательная резинка?

Всё самое интересное,интересное, познавательное,,разное,подборка фактов,длиннопост

Первыми аналогами жевательной резинки были кусочки смолы, которые находили при раскопках в древних поселениях. В Древней Греции и на Ближнем Востоке пережевывание смолы мастикового дерева применялось для очищения зубов. Более 1000 лет индейцы племени майя для тех же целей использовали сок гевеи (каучук).
Первыми начали производить жвачку братья Куртис из штата Мэн. Было это в середине XIX века. Они создали жевательную резинку из сосновой смолы, смешанной с пчелиным воском. Добившись в торговле новым продуктом определенного успеха, они в 1850 году решили расширить производство. Используя различные парафиновые ароматизаторы, они создали жвачки четырех марок:
Американский Флаг;
Ель 200-й глыбы;
Сосновая магистраль;
Сосна Янки.
Хотя с появлением каучуковой резинки их популярность резко упала. Патент на производство жвачки из каучука был получен в 1869 году Уильямом Финли Семплом из штата Огайо. Хотя сам он дальше ничего и не сделал, каучуковая жвачка увидела свет в том же году. Производством жевательной резинки занялся предприимчивый житель штата Нью-Йорк Томас Адамс. По дешевке купив тонну каучука и не найдя ей лучшего применения, он на свой страх и риск сварил у себя дома небольшой кусочек каучука и сформировал жвачки. Первую партию самодельных жвачек Адамсу на удивление удалось продать очень быстро, это подтолкнуло его к мысли о крупном производстве. И в 1871-м году он патентует автомат по производству жевательной резинки, после чего начинает ее выпуск в больших масштабах. Следующим его шагом стало изменение вкусовых качеств этого продукта посредством добавления лакричного ароматизатора. Кроме того, с этого момента жвачка «Black Jack», как назвал ее Адамс, изменила форму и стала похожа на карандашик. Это название стало известным едва ли не каждому американцу.
Новый виток в истории жевательной резинки случился с появлением надувающейся жвачки «Blibber-Blubber» в 1906-м году. Изобрел такой вид жвачки Фрэнк Флир, а спустя 22 года бухгалтер его компании Уолтер Димер смог ее еще и усовершенствовать. Также именно этой компании принадлежит оригинальная идея производства леденцов с жвачкой внутри. Особым спросом они пользовались во времена Сухого закона, так как существенно уменьшали запах алкоголя.
С тех пор жвачка прочно и, кажется, навсегда стала неизменным атрибутом нашей жизни. Хорошо это или плохо, вопрос спорный. Но для уменьшения ее негативных воздействий (а они существуют) в наши дни их состав тщательно тестируется и многократно проверяется.
Основным компонентом этого продукта является сок дерева Саподилла, произрастающего в Центральной Америке, или смола некоторых хвойных деревьев, специально обработанная и размягченная. Помимо этого, присутствуют в ней и вещества, обладающие освежающим и дезодорирующим действием, например ментол или мята перечная. Жевательные резинки последнего поколения вместо сахара содержат глюкозу или сорбит, затормаживающие процесс появления кариеса.

Развернуть

длинопост время читабельно ...Всё самое интересное 

Что, если времени не существует?

V 1 А г/ НЕТ ВРЕМЕНИ ОБЪЯСНЯТЬ . . ‘ " • 'Ч . • ’*' * -.. ... -V ВРЕМЕНИ ВООБЩЕ НЕТ!,Всё самое интересное,интересное, познавательное,,разное,длинопост,время,читабельно


Что, если времени нет, все существует в настоящий момент, и это фундаментальный принцип Вселенный, который наши ученые до сих пор пытаются понять? Времени не существует, и квантовая теория только подтверждает это? Некоторые вещи ближе к вам во времени, некоторые - дальше, точно так же, как в пространстве. Но идея того, что время течет вокруг нас, может быть настолько же абсурдной, как и текучесть пространства.

Проблема времени появилась еще сто лет назад, когда специальная и общая теории относительности Эйнштейна разрушили представление о времени как об универсальной постоянной. Одним из следствий стало то, что прошлое, настоящее и будущее не абсолютны. Теории Эйнштейна также образовали раскол в физике, потому что правила общей теории относительности (которые описывают гравитацию и крупномасштабную структуру космоса) кажутся несовместимыми с правилами квантовой физики (которые действуют на самых малых масштабах).


Согласно специальной теории относительности Эйнштейна, нет никакого способа определить события так, чтобы их можно было обозначить как протекающие одновременно. Два события, которые происходят «сейчас» для вас, будут протекать в разное время для всех, кто движется с другой скоростью. Другие люди будут видеть разные «сейчас», которые могут содержать элементы вашего «сейчас», а могут и не содержать.

Результатом является картина так называемой блок-вселенной: вселенная выступает в качестве статичного неизменного «блока» в противовес традиционному мировосприятию. Вы можете отметить всеми возможными методами то, что считаете «сейчас», но это место не будет ничем отличаться от любого другого места, кроме того, что вы находитесь рядом. Прошлое и будущее физически отличаются не более, чем лево и право.

Уравнения физики не говорят нам, какие события происходят прямо сейчас — это как карта без символа «вы здесь». Момент настоящего в них просто не существует, равно как и течения времени. Кроме того, теории относительности Эйнштейна предполагают, что не только общего настоящего нет, но и все моменты одинаково реальны.

Почти сорок лет назад известный физик Джон Уилер из Принстона и Брайс де Витт из Университета Северной Каролины разработали экстраординарное уравнение, которое обеспечивало возможную рамку для объединения относительности и квантовой механики. Но уравнение Уилера-Де Витта всегда было спорным, в частности, потому, что добавляло еще один непонятный поворот в нашем понимании времени.

«Можно сказать, что время просто исчезло из уравнения Уилера-Де Витта, — говорит Карло Ровелли, физик из Университета Средиземноморья в Марселе, Франция. — Это вопрос, которым озадачены многие теоретики. Возможно, лучший способ мышления о квантовой реальности — отказаться от понятия времени, чтобы фундаментальное описание вселенной было вневременным».

Можно сказать, что чем лучше мы понимаем сознание, тем лучше мы понимаем время. Сознание — бесформенное невидимое поле энергии бесконечных измерений и возможностей, подложка всего сущего, независимая от времени, пространства, места. Оно охватывает все существование без ограничений времени и размерности, регистрирует все события, какими бы малыми они ни были, вплоть до мгновенной мысли. Взаимосвязь между временем и сознанием ограничивается точкой зрения человека, хотя, по сути, она безгранична.

Времени нет
Решение проблемы времени в физике и космологии по Джулиану Барбуру проще простого: нет такого понятия, как время.

«Если вы пытаетесь взять время в руки, оно всегда утекает сквозь пальцы, — говорит Барбур. — Люди уверены, что время есть, но не могут получить к нему доступ. Мне кажется, они не могут получить к нему доступ, потому что его вообще нет».

Радикальность Барбура проистекает из многих лет поиска ответов на вопросы классической и квантовой физики. Исаак Ньютон думал, что время подобно реке, текущей с одинаковой скоростью повсюду. Эйнштейн изменил эту картину, объединив пространство и время в единое четырехмерное пространство-время. Но даже Эйнштейн не смог определить время как меру изменений. По мнению Барбура, вопрос нужно поставить с ног на голову. Вызывая призрак Парменида, Барбур видит каждый отдельный момент как цельный, завершенный и существующий сам по себе. Он называет эти моменты «сейчасами».

«По мере нашей жизни, мы движемся через последовательность «сейчасов», — говорит Барбур. — Вопрос в том, какие они?». Для Барбура каждый «сейчас» — это расположение всего во Вселенной. «У меня есть стойкое ощущение, что вещи имеют определенные позиции по отношению друг к другу. Я пытаюсь абстрагироваться от всего, что мы не можем видеть (прямо или косвенно), и просто сохранить эту идею сосуществования множества вещей одновременно. Это просто «сейчасы», ничего больше или меньше».

Сейчасы Барбура можно представить как страницы романа, вырванные из корешка и разбросанные в случайном порядке по полу. Каждая страница — это отдельная единица, существующая вне времени и без времени. Выстраивание страниц в определенном порядке и пошаговое их перемещение создает историю. Но вне зависимости от порядка расположения, каждая страница будет завершенной и независимо. Как говорит Барбур, «прыгающий кот — это не то же самое, что падающий кот». Барбур пытается вернуть понятие времени к платоновским идеям, когда время будет незыблемо, цельно и абсолютно.

Наша иллюзия прошлого возникает, потому что каждый «сейчас» содержит объекты, которые выступают «записями» на языке Барбура. «Единственное доказательство прошедшей недели — ваши воспоминания. Но воспоминания приходят из стабильной структуры нейронов в вашем настоящем мозге. Единственное доказательство прошлого Земли, которое у нас есть, это камни и окаменелости. Но это стабильные структуры, расположенные в форме минералов, которые мы изучаем в настоящее время. Дело в том, что у нас есть только эти записи и все они существуют «сейчас».

Время, с этой точки зрения, не существует отдельно от вселенной. За пределами космоса не тикают часы. Многие из нас воспринимают время подобно Ньютону: «Абсолютное, истинное и математическое время по самой своей сути протекает равномерно, вне зависимости от чего-либо внешне». Но Эйнштейн доказал, что время является частью ткани вселенной. Вопреки тому, что думал Ньютон, наши обычные часы не измеряют что-то независимое от вселенной.

Слово «механика» в термине «квантовая механика» означает машину, предсказуемую, работоспособную, познаваемую вещь. Квантовая Вселенная, в которой мы живем, хотим мы этого или нет, на поверхности кажется механической и линейной, но это не так. Ее лучше описать как бесконечное множество возможных линейных действий. Эту науку можно было назвать «квантовой экологией» вместо «квантовой механики», потому что она создается изнутри. Все, что выходит из невидимости, делает это подобно живому организму.

В квантовой механике все частицы материи и энергии можно описать как волны. У волн есть необычное свойство: в одном месте может существовать бесконечное их число. Если однажды будет доказано, что время и пространство состоят из квантов, эти кванты будут существовать сбитые в одной безразмерной точке все вместе.

Современная преобладающая парадигма в мире гласит, что если вещь нельзя объяснить, детализировать, проанализировать и задокументировать линейными научно-мыслительными процессами, то это чепуха. Если у вас есть духовное объяснение человеческого существование, то вы сумасшедший с точки зрения науки, живете в своем мирке. Научное мышление говорит нам, что все во вселенной можно объяснить либо сейчас, либо в будущем, используя аналитические научные методы. Наука говорит: в отсутствие научного доказательства этот предмет не стоит обсуждения. Если его нельзя положить в коробку с биркой, забудьте о нем». Очевидно, многие видят в таком подходе ограничения в развитии человека. Но этот вопрос слишком спорный.

Поведение квантовой частицы нельзя объяснить одной только наукой, кроме того, его нельзя объяснить понятной нашему уму терминологией, потому что наш ум по своим природным функциям считает, что реальность состоит из вещей, вещи можно разбить на мелкие составляющие и объяснить в линейном механическом стиле. Чтобы понять, насколько ошибочно это мнение, достаточно вспомнить, что мы живем в относительном мире и взаимодействуем с другими сознательными существами и вселенной линейным образом. Такова природа ума. Нужно выйти за ее пределы, чтобы найти ответы.

По мнению физиков, жизнь описывается серией срезов: вот вы ребенок, вот вы позавтракали сегодня, вот читаете эту статью, и каждый срез существует неподвижно в своем времени. Мы генерируем поток времени, потому что считаем, что тот же «я», который завтракал этим утром, читает настоящую статью.

Так зачем нам время? Эйнштейн, например, представил безвременной вселенной, которую он помог создать, такой некролог, похожий на утешение по случаю безвременно умершего друга: «Ныне он [друг] покинул этот странный мир чуть раньше меня. Это ничего не значит. Люди вроде нас, верующие в физику, знают, что разница между прошлым, настоящим и будущим — всего лишь устойчивая иллюзия».

Развернуть

интересное интересные факты обо всем длиннопост под катом продолжение ...Всё самое интересное 

Факты обо всем № 3

История бритья

Всё самое интересное,интересное, познавательное,,разное,интересное,интересные факты, картинки и истории ,интересные факты обо всем,длиннопост,под катом продолжение

Историки считают, что традиция бритья восходит еще к неандертальцам. Около 100 000 лет назад те, руководствуясь некими религиозно-эстетическими соображениями, начали покрывать себя татуировками, выдергивать волосы и стачивать зубы. Для эпиляции использовались створки ракушек, а для бритья – острые обломки кварца (сравнимые с современными бритвами), оставлявшие на коже шрамы.
Доисторическое бритьё было напрямую связано с татуировкой. Достаточно было нанести себе при бритье упорядоченные порезы, после втереть в кожу краску – и появлялась татуировка.
Примерно 7000 лет назад стали появляться первые депиляционные кремы. В их состав входили такие «полезные» вещества, как мышьяк, негашеная известь, крахмал. Обмазавшись ими, можно было потерять не только волосы, но и жизнь. Древние персы усовершенствовали данный процесс. Они удаляли волосы с помощью ткани и меда (сегодня применяется воск).
Зачем нашим предкам понадобилось бриться? Причин множество. Во-первых, люди боролись с блохами и вшами. Во-вторых, бойцы брили волосы, чтобы противник не схватился за них в битве. В-третьих, волосяной покров накапливал дурные запахи, а густая, спутанная борода мешала принимать пищу. Наконец, длинные бороды ассоциировались со старостью и смертью. Сбривая их, человек омолаживался как внешне, так и духовно.
В Древнем Египте люди имели особые причины для бритья. Геродот писал, что богатые египтяне – и даже их дети – брились несколько раз в день. Это было связано со стремлением к чистоте перед богами и выделению себя из массы «диких» народов. На лысые головы надевались парики, спасавшие кожу от солнца.
Бритвы делались из меди и бронзы (другая колыбель цивилизации – Месопотамия – использовала каменные скребки). Бороды разрешалось носить лишь царям – да и то фальшивые, подвязываемые к лицу на тесемках.
Александр Македонский был фанатом бритья (он объяснял это как эстетическими преимуществами гладкой кожи, так и военными – враг не мог схватить его за бороду) и никогда не начинал сражение непобритым. Он не только захватил половину древнего мира, но и распространил по нему моду на удаление волос с тела.
Примерно с 400 года до нашей эры индусы взяли за обычай носить бороды, но при этом тщательно брили волосы на теле в самых ответственных местах (женщины брились от плеч до ног, уделяя последним особое внимание). Волосатость не уживалась с изощрениями Кама-Сутры. Для сравнения, в это же самое время прекрасные представительницы «цивилизованных» греков избавлялись от волос на ногах с помощью огня масляной лампы.
Посещение тонзора для стрижки было обязательной частью дневной рутины римлян – как и визит в бани. С тонзором было принято обсуждать свежие новости, так что цирюльники поначалу были разносчиками сплетен. Некоторые из них умудрялись сколотить на бритье клиентов немалые состояния.
В средневековье цирюльники переквалифицировались из журналистов во врачей. К ним ходили бриться, стричься, вырывать зубы, пускать кровь, обкладываться пиявками и даже ампутировать конечности. Они сопровождали армии, обслуживали жителей замков. В 1540 году британское Братство врачей официально объединилось с Компанией Цирюльников. До 1800 года между врачами и парикмахерами стоял знак равенства.
Средневековые европейские дамы полностью удаляли себе брови, ресницы, волосы со лба и висков, что придавало им слегка инопланетный вид. Кроме того, они отбеливали кожу свинцовыми белилами. Свинец – отличное средство для того, чтобы быть хрупкой, чахлой и сохранить красоту, умерев еще в молодости.
На исход битвы при Гастингсе (1066 год), решившей судьбу всей Англии, повлияло… бритье. Разведчики короля Гарольда не обнаружили солдат Вильгельма Завоевателя, но доложили об огромном количестве «монахов». Гарольд недооценил силы противника, ведь на самом деле «монахами» были солдаты герцога – тщательно выбритые и похожие на священников.
В 1722 году Петр I самолично остриг боярам бороды и ввел на них дифференцированный налог. Купцы платили по 100 рублей в год, царедворцы по 60, а крестьяне – две деньги (1 копейку). Россия начала бриться.
В 1770 году веке Жан-Жак Перре публикует книгу «Искусство брить себя», где впервые предлагает использовать «безопасные бритвы», режущая кромка которых ограничена рамкой и не может наносить глубокие порезы. На эту идею француза вдохновил… обыкновенный рубанок.
А в 1909 году американский изобретатель Кинг Джиллет начал продавать безопасные бритвенные станки Safety Razors ниже их себестоимости, восполняя убытки дальнейшими продажами сменных лезвий. Рекламной компанией фирме Gillette, сделавшей ее бритвы самыми популярными в мире, стала Первая мировая война. Кинг заключил с правительством контракт, по которому бритва Gillette входила в комплект экипировки каждого американского солдата. Так бритвенные станки разошлись по всей Европе.
В 1921 году полковник Якоб Шик вдохновляется устройством винтовки и создает бритвенный станок с лезвиями, подающимися взамен старых из магазина – как патроны. Пятью годами позже он конструирует электробритву с вибрирующими лезвиями.
1937 год. Компания Remington выпускает первую в мире полноценную электробритву. Двумя годами позже Фредерик Филипс выпускает популярнейшую электробритву PhiliShave, разработанную инженером Александром Хоровицем. С началом войны большинство представителей семейства Филипсов бежит в США, и производство электробритв резко падает. Из-за дефицита оборонных материалов некоторые женщины вынуждены бриться, стирая волосы с тела наждачной бумагой – вместе с верхним слоем кожи.
Дальнейшее вы знаете: одноразовые бритвы, многолезвийные станки, плавающие головки, электробритвы на батарейках, специальные рукояти женских бритв (удобные для обратного удержания при бритье ног)… Но, несмотря на прогресс в области комфорта бритья, его технологии мало изменились за последние 50 лет.


Кто изобрел «Доширак»?

Всё самое интересное,интересное, познавательное,,разное,интересное,интересные факты, картинки и истории ,интересные факты обо всем,длиннопост,под катом продолжение

Момофуку Андо (5 марта 1910, Каги, Тайвань — 5 января 2007, Осака, Япония) — японский изобретатель лапши быстрого приготовления и супа из неё. Момофуку Андо основал и все годы был руководителем компании Nissin Food Products Co., Ltd.
В опросе общественного мнения в Японии, проведённом в 2000 году, изобретение Момофуку Андо лапши быстрого приготовления назвали главным японским изобретением XX века.
Знаменитая куриная лапша быстрого приготовления Chikin Ramen была роскошью, когда Момофуку Андо её изобрёл. Сейчас — это одно из наиболее распространённых блюд, которое готовится за 3 минуты.


Интересные факты про самые обычные вещи

IIIllf I fililí "У,Всё самое интересное,интересное, познавательное,,разное,интересное,интересные факты, картинки и истории ,интересные факты обо всем,длиннопост,под катом продолжение

Обертка для конфет
Когда говорят о великом изобретателе Томасе Алве Эдисоне, вспоминают, по крайней мере, пять его самых известных творений: фонограф, пишущая машинка, биржевой телеграф, генератор переменного тока и, конечно, лампочку. Последнюю на самом деле запатентовал русский ученый Александр Лодыгин, а Эдисон уже занялся ее усовершенствованием.
По проекту Эдисона в 1882 году Нью-Йорке была построена первая в мире электростанция постоянного тока. Он создал прибор, явившийся прототипом диктофона, аппарат для записи телефонных разговоров, сконструировал железо-никелевый аккумулятор и много чего еще (всего около 1000 патентов). И среди всего этого великолепия мало кто вспоминает, что в 1872 году дядюшка Эдисон придумал еще и парафинированную бумагу, служившую первой оберткой для конфет. Эх, если бы не он, как бы мы сейчас хранили сладости?.. Рекомендуем посетить ресурс Все для дам – секреты красоты и здоровья.

Туалетная бумага
Как же приходилось изворачиваться нашим предкам, чтобы после справления естественных надобностей произвести элементарную гигиеническую процедуру!
Франсуа Рабле полагал, что приятнее всего делать это с помощью живого утенка. В Древнем Риме для этих нужд приспособили губку: она крепилась на палку и после использования помещалась в чашу с соленой водой.
Викинги подтирались комками шерсти, коренные американцы – всевозможными листьями и початками кукурузы.
Французские короли подходили к этому вопросу очень изысканно и делали это кружевом и льняными тряпочками.
Использовать в этом деле бумагу первыми стали китайцы, но не простые смертные, а исключительно императоры. Много позже на бумагу перешли все остальные и во всем мире: в ход пошли старые газеты, каталоги, альманахи.
Только в 1857 году ньюйоркцу Джозефу Гайетти пришло в голову нарезать бумагу аккуратными квадратами и паковать в пачки. Он так гордился своим изобретением, что на каждом листочке печатал свое имя. Установить имя человека, придумавшего сворачивать туалетную бумагу в рулоны, не представляется возможным: впервые такие рулоны стала выпускать американская бумажная фабрика «Scott Paper» в 1890 году.

Колесо
Кто, когда и зачем впервые придумал колесо, остается одной из самых больших загадок истории. Самое древнее колесо было найдено на территории Месопотамии, и сделано оно было около 55 веков назад. Различные грузы до этого транспортировались с помощью того, что нынче известно как санки.
На шумерской пиктограмме 35 века до н.э. впервые было изображено подобие повозки: санки на колесах. Колеса в то время были вырезанными из дерева цельными дисками.
Первые колеса со спицами были изобретены на полуострове Малая Азия (самый западный полуостров Азии, ныне принадлежит Турции) в XX веке до н.э. и в том же веке докатились до Европы и до Китая и Индии. Такие колеса использовались только в колесницах для перевозки людей, но в Египте их стали применять и для грузов.
Наибольшее распространение колеса и всевозможные повозки получили в Древней Греции, а потом и Риме. В Америке колеса и повозки появились только с приходом туда европейцев.

Шнурки
Довольно странно, но история почему-то не сохранила имени гения, придумавшего шнурки, зато каким-то образом сохранила дату, когда это событие произошло, – 27 марта 1790 года. Именно в этот день в Англии появился первый шнурок для ботинок в виде веревочки с металлическими наконечниками на концах, которые не давали ей обтрепаться и помогали продевать шнурок в отверстия на обуви. А вот до появления этого изобретения вся обувь застегивалась на пряжки.

Вешалка-плечики
В это трудно поверить, но патент на изобретение крючка для одежды был получен неким О.А. Нортом только в 1869 году. На что до этого люди вешали свои вещи – не ясно. И только в 1903 году Альберт Паркхаус, работавший на проволочном заводе, в ответ на постоянные жалобы рабочих, что им не хватает крючков для своих пальто, изобрел вешалку-плечики.
Из проволоки он сделал два овала, находящиеся друг напротив друга на некотором расстоянии, а их концы соединил в крюк. В 1932 году эти овалы соединили картоном, чтобы мокрая одежда не провисала и не мялась.
А три года спустя была изобретена вешалка с нижней планкой, которая и стала прообразом для всех современных вешалок.

Ложка и вилка
Древние римляне и греки, ведя разговоры о прекрасном, ели руками. Римский поэт Овидий научил их кушать кончиками пальцев и после еды вытирать их о хлеб. Позже в Греции на руки надевались специальные перчатки с жесткими наконечниками. А вообще самые первые прообразы ложек делались еще за 3000 лет до нашей эры.
Они лепились из глины или выпиливались из костей или рогов животных, также в ход шли морские раковины, рыбьи кости и головы и древесина. Самые первые серебряные ложки сделали на Руси в 998 году по приказу князя Владимира Красное Солнышко для его дружины. Ложки тогда были с короткой ручкой и держались в кулаке.
Что-то похожее на современную вилку, только с пятью, а порой и большим количеством зубчиков появилось в Азии в десятом веке. Через сто лет это изобретение докатилось и до Европы, но широкое распространение вилка получила только к XVI веку: острое шило, с помощью которого накалывали пищу и ели, было заменено на вилку с двумя зубчиками.
К концу XVIII века практически во всех странах Европы столовый нож с острым концом уступил место ножу, имеющему закругленное лезвие. Необходимости накалывать на нож куски пищи больше не было, так как эту функцию выполняла вилка.

Пуговица
Древние люди вместо пуговиц соединяли куски своей одежды шипами от растений, косточками животных и палками. В Древнем Египте уже использовались пряжки или один кусок одежды продевался в отверстие, сделанное в другом, или концы просто связывались.
Кто именно изобрел пуговицу, неизвестно: одни ученые склоняются к тому, что это были греки или римляне, другие – что пуговица пришла из Азии. Делались они преимущественно из слоновой кости.
Широкое распространение пуговицы получили только в XIII веке. И почти до XVIII века были признаком богатства и знатного происхождения: короли и аристократия могли позволить себе заказать пуговицы из золота и серебра. В начале XVIII века пуговицы стали делать из металла и меди, но почти до конца XIX века пуговицы были настолько дорогим товаром, что их перешивали с одной одежды на другую.

Скрепка
Соединять вместе листы бумаги начали в XIII веке: в левом верхнем углу каждой страницы делались надрезы, сквозь которые продевали ленточку. Позже тесьму стали натирать воском, чтобы, во-первых, лента стала более прочной, а во-вторых, было легче вынимать или вкладывать нужные листы.
В 1835 году врач из Нью-Йорка Джон Айрленд Хоуи изобрел машину для производства булавок. Булавки были, естественно, придуманы для портных, чтобы им было проще во время шитья соединять куски ткани, но их также стали использовать при скреплении бумаги.
Впервые соединять бумагу закрученным куском проволоки придумал норвежский изобретатель Йохан Ваалер в 1899 году, но она не была похожа на нынешнюю скрепку. А скрепку в том виде, в котором она сейчас и существует, придумали в английской компании «Gem Manufacturing Ltd», но почему-то это изобретение так никто никогда не запатентовал.

Расческа
Самыми древними расческами, которыми пользовались жители Земли, можно считать рыбьи скелеты. Неизвестно, где и когда была сделана первая расческа, но один из самых древних гребней был найден при раскопках на территории Древнего Рима.
Он был сделан из широкой кости животного с ручкой и восемью вручную вырезанными зубчиками, располагавшимися на расстоянии 0,2 см друг от друга. Впоследствии расчески делались также из дерева, кораллов, слоновой кости, черепашьего панциря и рогов различных животных. Этот материал для гребней использовался вплоть до середины XIX века.
В 1869 году два брата – Исайя и Джон Хайатт – изобрели целлулоид, что полностью изменило производство расчесок. Слоны и черепахи были спасены от полного уничтожения, а люди получили более дешевые гребни из материала, внешне очень похожего и на кораллы, и на слоновую кость, и на панцирь черепахи.

Спички
Какими только способами люди не добывали огонь до появления спичек. Терли друг о друга деревянные поверхности, выбивали искру кремнием, пытались поймать солнечный луч сквозь кусочек стекла. А когда это удавалось сделать, бережно поддерживали горящие угли в глиняных горшках.
И только в конце XVIII века жить стало проще – французский химик Клод Бертолле опытным путем получил вещество, названное впоследствии бертолетовой солью. Так в Европе в 1805 году появились спички-»маканки» – тонкие лучинки с головками, смазанными бертолетовой солью, которые зажигались после обмакивания их в раствор концентрированной серной кислоты.
Изобретению первых «сухих» спичек мир обязан английскому химику и аптекарю Джону Уокеру. В 1827 году он обнаружил, что если на кончик деревянной палочки нанести смесь из сульфида сурьмы, бертолетовой соли и гуммиарабика (это такая вязкая жидкость, выделяемая акацией), а затем высушить все это дело на воздухе, то при трении такой спички о наждачную бумагу ее головка вполне легко зажигается.
А следовательно, необходимость таскать с собою пузырек с серной кислотой отпадает. Уокер наладил небольшое производство своих спичек, которые упаковывались в оловянные пеналы по 100 штук, однако больших денег на своем изобретении не заработал. К тому же эти спички имели ужасный запах.
В 1830 году 19-летний французский химик Шарль Сориа изобрел фосфорные спички, состоявшие из смеси бертолетовой соли, фосфора и клея.
Эти вообще легко воспламенялись при трении о любую твердую поверхность, например подошву сапога. Спички Сориа не имели запаха, однако были вредны для здоровья, поскольку белый фосфор ядовит.
В 1855 году химик Йохан Лундстром сообразил, что красное иногда лучше, чем белое. Швед нанес красный фосфор на поверхность наждачной бумаги снаружи небольшой коробочки и добавил тот же самый фосфор в состав головки спички. Таким образом, они уже не приносили вреда здоровью и легко зажигались о заранее приготовленную поверхность.
Наконец, в 1889 году Джошуа Пьюси изобрел спичечный коробок, однако патент на это изобретение был отдан американской компании Diamond Match Company, которая придумала точно такой же, но с «зажигательной» поверхностью снаружи (у Пьюси она располагалась внутри коробка).
Для общего развития. В Россию фосфорные спички были завезены из Европы в 1836 году и продавались по рублю серебром за сотню. А первая отечественная фабрика по производству спичек была построена в Санкт-Петербурге в 1837 году.

Иголка
История шитья насчитывает уже более 20 тысяч лет. Первобытные люди прокалывали шкуры доисторическим подобием шила из шипов или обтесанных камней, через отверстия продевали сухожилия животных и таким образом сооружали себе «костюм».
Самые первые иголки с ушком, сделанные из камней, костей или рогов животных, были найдены на территориях современной Западной Европы и Средней Азии около 17 тысяч лет назад. В Африке иголками служили толстые жилки пальмовых листьев, к которым привязывались нитки, сделанные также из растений.
Считается, что первая стальная иголка была сделана в Китае. Там же, в III веке до нашей эры, придумали наперсток. Племена, населявшие Мавританию (в древности область на северо-западе Африки, западная часть территории современного Алжира и восточная часть территории современного Марокко), донесли эти изобретения на Запад.
Массовое производство иголок началось только в XIV веке в Нюрнберге, а потом и в Англии. Самую первую иголку с помощью механизированного производства сделали в 1785 году.
Первого прадеда современных ножниц нашли в руинах Древнего Египта. Сделанные из цельного куска металла, а не из двух скрещенных лезвий, эти ножницы датируются XVI веком до нашей эры. А ножницы в том виде, в котором они известны сейчас, изобрел Леонардо да Винчи.

Каблук

Первые каблуки появились у восточных всадников в XII веке, однако назвать их каблуками в общем-то было сложно. Это были некие нашлепки, которые служили для весьма практичных целей: мужчины приколачивали их к туфлям, чтобы нога крепко держалась в стремени при скачке. А вот кто и когда изобрел настоящий каблук, точно неизвестно, однако принято считать, что произошло это в XVII веке в Испании с легкой руки мастеров из города Кордовы.
Они разработали структуру и конструкцию каблука, основными формами которого были скошенные внутрь и «французские» – с «талией» посередине. В эпоху рококо каблук перебрался ближе к центру туфельки, тем самым как бы уменьшая ножку. Со временем форма каблука претерпевала различные изменения: от высоких каблуков-рюмочек до широких квадратных, которые придумали специально для девушек, танцевавших твист.
И, наконец, в 1950 году итальянский модельер Сальваторе Феррагамо изобрел знаменитую шпильку: в качестве опоры для каблука он предложил длинный стальной стержень-стилет.

Зубная щетка
О гигиене полости рта заботились еще за три тысячи лет до Рождества Христова древние египтяне: в их саркофагах были найдены прообразы зубных щеток, сделанные из веточек деревьев с распушенными концами. Но изобретателем современных щеток считается китайский император, соорудивший первую щетку в 1498 году.
Щетина китайских зубных щеток была сделана из волос с загривка сибирского дикого кабана, а ручки были либо из дерева, либо из кости животного. Когда в XVII веке это изобретение дошло до Европы, где в то время чистить зубы было не принято, жесткая шерсть кабана была заменена на более мягкую лошадиную гриву. До этого чистоплотные европейцы использовали зубочистки, сделанные из гусиных перьев, а те, кто побогаче, – из меди или серебра, или просто протирали зубы тряпочкой.
Шерсть и щетина животных, в частности того же кабана, использовалась при производстве зубных щеток вплоть до ХХ века. В 1937 году изобрели нейлон, и с 1938 года ворсинки щетки стали делать из него.
Однако щетки «животного происхождения» продолжали пользоваться большей популярностью, так как были мягче и не царапали десны, в отличие от искусственных. Нейлоновая щетина зубных щеток стала такой мягкой, как сейчас, только в 1950 году.


Верный спутник Майкла Джексона

Всё самое интересное,интересное, познавательное,,разное,интересное,интересные факты, картинки и истории ,интересные факты обо всем,длиннопост,под катом продолжение

В 1985 году Майкл оплатил лечение от рака небольшой обезьяны. Она находилась в Техасском центре изучения рака и после излечения Певец повсюду возил ее с собой.
Шимпанзе по кличке «Bubble» стала постоянным спутником и другом Майкла Джексона, они вдвоем носили даже одинаковые сценические костюмы красного цвета во время его знаменитого тура «Bad». Сейчас обезьянка находится в приюте для животных, так как стала взрослой и довольно опасной для окружающих. Майкл Джексон периодически навещал ее, и сотрудники приюта утверждают, что шимпанзе бурно реагировала на его визиты, узнавая своего бывшего спутника.


Учёные до сих пор не знают, почему люди смущаются, смеются, целуются и чешут в носу

Всё самое интересное,интересное, познавательное,,разное,интересное,интересные факты, картинки и истории ,интересные факты обо всем,длиннопост,под катом продолжение

Ученым удалось расщепить атом, высадить человека на Луну и изучить структуру ДНК, однако до сих пор существуют, на первый взгляд, простейшие проявления человеческого поведения, которые мировые умы не в силах разгадать.
В список научных загадок попали ежедневные проявления человеческих эмоций, происхождение которых ученые до сих пор не могут до конца объяснить. Начиная статью фразой «Нет ничего загадочнее, чем мы сами», авторы статьи начинают свой рейтинг с такого явления, как смущение. Попытки объяснить, почему мы краснеем, когда попадаем в неловкую ситуацию, предпринимал еще Чарльз Дарвин, но до сих пор точного ответа на этот вопрос не существует. По мнению некоторых, краска в лице помогает сгладить неровности общения и побуждает некоторую интимность, являясь сигналом слабости.
На втором месте идет человеческий смех и выделение эндорфинов — гормонов радости. Проведенные исследования так и не смогли определить, что именно побуждает людей смеяться, так как порой самые банальные комментарии вызывают больше положительных эмоций, чем шутки.
Замыкают тройку лидеров поцелуи, возникновение которых невозможно объяснить генетически, так как не все людские сообщества их используют.
Возможно, поцелуи возникают как память о кормлении грудью, а древние люди выкармливали своих отпрысков и вовсе рот в рот. Таким образом, возможно, и возникла связь между ощущением чужой слюны и удовольствием.
Ломают голову ученые и над сновидениями, изучением которых посвятил свою жизнь Зигмунд Фрейд. Однако его теория о подсознании, воплощенном во снах, была широко раскритикована, а ученые обнаружили, что сны помогают нам справиться с эмоциями. И все же никто не смог ответить на вопрос, почему мы порой видим странные видения, когда спим.
Неразгаданными остались также суеверия, «переходный возраст», альтруизм, чесание в носу, рост волос на теле и искусство.
Развернуть
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме Девушка в форме рейха (+809 картинок)