Появление жизни

Подписчиков: 0     Сообщений: 1     Рейтинг постов: 7.7

#Клуб аметистов Появление жизни The Brights ...Всё самое интересное 

Как оно было: Жизнь

Невозможно представить себе, как сложнейшие клеточные элементы (преимущественно ферменты, т.е. катализаторы, в основе которых лежат молекулы белков) могли 3,7 млрд лет назад, когда жизнь впервые возникла на нашей планете, самопроизвольно сформироваться из неживой материи. В пионерских экспериментах 1950-х гг. Стэнли Миллер (Stanley L. Miller) и Харольд Юри (Harold C. Urey) из Чикагского университета обнаружили, что при определенных условиях из довольно простых химических соединений легко образуется основной строительный материал для синтеза белков — аминокислоты. Но переход от аминокислот к сложным молекулам белков и ферментов — это совершенно другое дело. 


➡ С чего начинается жизнь?


 Одна из наиболее сложных и интересных загадок происхождения жизни — это проблема образования из более простых веществ, присутствовавших на ранней Земле, таких молекул, которые были бы носителями генетической информации.


 Оценивая роль РНК в современных клетках, можно предположить, что рибонуклеиновые кислоты появились раньше дезоксирибонуклеиновых, потому что когда в клетке начинается синтез белка, в первую очередь происходит копирование гена этого белка из ДНК в РНК. Затем в процессе биосинтеза участвует только РНК, использующаяся в качестве шаблона для построения белковой молекулы. В самом начале развития жизни эти последующие стадии могли существовать сами по себе, независимо от ДНК. Позже, в результате мутации, могли появиться дезоксирибонуклеиновые кислоты, которые закрепились в клетке как более устойчивая форма хранения генетического материала благодаря своей более высокой химической стабильности.


 У исследователей есть еще один повод думать, что РНК появилась до ДНК. В современной клетке биосинтез белка осуществляется органоидами, которые называются рибосомами; так вот, рибосомы можно считать РНК-версией ферментов. Данные органоиды, отвечающие за процесс трансляции РНК, — это РНК-белковые комплексы, в которых именно рибонуклеиновая часть выполняет каталитическую функцию. Таким образом, каждая из наших клеток в своих рибосомах содержит свидетельство того, что существовавший в древности мир был миром РНК. 


➡ Требуется сборка


 Допустим, что теперь у нас есть отдаленное представление о том, как могли образоваться азотистые основания, углеводная и фосфатная группы. Следующий логический шаг — определить, каким образом данные компоненты могли бы соединиться в нужный нам полимер. Однако в последние несколько десятилетий именно этот этап вызывает у исследователей, занимающихся пребиотической химией, наиболее сильную фрустрацию. Проблема в том, что простое смешивание трех компонентов в воде не приводит к спонтанному формированию нуклеотидов — в основном потому, что в результате каждой реакции конденсации выделяется молекула воды, из-за чего в водных растворах подобные реакции самопроизвольно практически не протекают. Образование подобных химических связей возможно, но процесс будет идти с поглощением энергии, поэтому реакцию способно ускорить, например, присутствие высокоэнергетических соединений. Такие соединения вполне могли существовать на ранней Земле, однако лабораторные эксперименты с участием этих веществ оказались в лучшем случае малопроизводительными, а в большинстве случаев — совершенно безуспешными.


 Весной 2009 г. большой переполох устроили Джон Сазерленд (John Sutherland) и его соавторы из Манчестерского университета в Англии, сообщив, что они нашли гораздо более вероятный способ формирования нуклеотидов, позволяющий избежать неясностей, связанных с нестабильностью рибозы. Их метод основан на использовании тех же простых исходных веществ, что и в предыдущем случае — цианидов, ацетилена и формальдегида. Однако на этом сходство заканчивается. Нестандартно мыслящие химики нарушили традицию, даже не пытаясь воссоздать нуклеотиды путем соединения азотистого основания, углевода и фосфатной группы. Вместо того чтобы синтезировать азотистые основания и рибозу независимо друг от друга, а затем тратить силы на попытки соединить их, исследователи смешали необходимые исходные вещества вместе с фосфатом. В итоге цепь последовательных реакций (в которой фосфат на нескольких ступенях выступает в качестве основного катализатора) привела к образованию маленькой молекулы под названием 2-аминооксазол, которую можно рассматривать как фрагмент углевода, соединенного с частью азотистого основания. Важная особенность данного вещества — то, что оно очень летучее, и молекулы его стабильны.

} ^/ДВОЙНАЯ НИТЬ РНК V '• '* / 'Т' ‘-V 1 Г2^\Л * .'и ъ>л к \ • , —\ •' "? .4 ЛАГ К > • и ; ' ч*-* N. .Г< .. Углевод /т Т ) ’"' Г \ -Азотистое- основание | тФосфатная груцпа^ £ ' *^ч \-jyy .,-•••■ | Углевод- ^ \ Комплементарные фосфатный I пары азотистых «костяк» \ оснований

   Предположим, что небольшие количества 2-аминооксазола образовались в океанах древней Земли и оказались в смеси с прочими химическими веществами. По мере того как вода с поверхности морей испарялась, 2-аминооксазол улетучивался, а затем конденсировался где-нибудь еще, но уже в очищенной форме. Там он мог накапливаться, образовывая естественный резервуар вещества, готового для последующих химических превращений, в итоге способных привести к образованию полного углевода и азотистого основания, соединенных друг с другом. Другое существенное и внушающее оптимизм преимущество этой цепочки реакций — автокатализ: образующиеся на ранних стадиях промежуточные продукты реакций становятся катализаторами для превращений, происходящих на более поздних стадиях процесса. Смесь нуклеотидов, которая образуется в результате реакций, содержит не только «правильные» нуклеотиды; в некоторых случаях углевод и азотистое основание, соединяясь, дают иную пространственную конфигурацию. Однако облучение ультрафиолетом (а на молодой Земле мелководье, где зарождалась жизнь, подвергалось интенсивному облучению) разрушает «неправильные» нуклеотиды и оставляет неповрежденными «правильные» экземпляры. Конечный результат — удивительно чистая смесь цитозина и урацила, нуклеотидов, составляющих современные рибонуклеиновые кислоты. Конечно, остается проблема синтеза G и А, так что исследователям пока хватает работы, но открытие команды Сазерленда — большой шаг на пути развития наших представлений о том, как сложная полимерная молекула РНК могла сформироваться миллионы лет назад на Земле.


➡ Опыты в пробирке


 Выяснив, каким образом на молодой планете могли появиться готовые нуклеотиды, ученые оказались перед последним препятствием: как соединить их в полимерную молекулу РНК. Образование связи между углеводной группой одного нуклеотида и фосфатной группой другого (так, чтобы мономеры один за другим выстроились в цепь) относится к реакциям поликонденсации, при которых происходит отщепление молекулы воды. Из-за этого, как уже говорилось выше, подобные превращения в водных растворах самопроизвольно не протекают и всегда сопровождаются поглощением энергии. Добавляя различные реагенты в раствор химически активных «версий» нуклеотидов, исследователи смогли получить короткоцепочечные молекулы РНК (от двух до 40 мономеров длиной). Затем в конце 1990-х гг. Джим Феррис (Jim Ferris) со своими коллегами из Политехнического института Ренсселера показали, что глинистые минералы облегчают процесс, позволяя синтезировать цепи в 50 или около того нуклеотидов (длина обычного гена сегодня составляет от тысяч до миллионов мономеров). Свойство глинистого субстрата осаждать на своей поверхности нуклеотиды приводит к сближению активных молекул, что стимулирует их соединение. Это открытие привело некоторых исследователей к мысли, что жизнь могла появиться на глинистой поверхности, возможно, на дне грязевых луж, появляющихся в результате весенней оттепели.


 К сожалению, появление полимера — носителя генетической информации не решает проблему происхождения жизни. Для того чтобы подходить под определение живых, организмы должны не только содержать в себе генетическую информацию, но и обладать способностью к размножению, т.е. самовоспроизводству — процессу, который включает в себя ее копирование. В современных клетках за это отвечают ферменты, основу которых составляют белки. Однако недавно специалисты обнаружили, что нуклеиновые полимеры, содержащие в себе «правильные» последовательности нуклеотидов, могут изгибаться в структуры определенной формы, обладающие каталитической активностью, и инициировать те химические реакции, которые сегодня ускоряются ферментами. Следовательно, существует вероятность, что в самых первых организмах РНК могла катализировать свою собственную репликацию. Такая точка зрения привела к серии экспериментов, проведенных в двух лабораториях: нашей и Дэвида Бартела (David Bartel) из Массачусетсского технологического института. Нам удалось создать «новые рибосомы». Мы начали с синтеза триллионов случайных последовательностей РНК. Затем выбрали из них те, которые обладали каталитическими свойствами, и скопировали их. В процессе копирования иногда происходили ошибки (иначе говоря, мутации), в результате чего некоторые из дочерних цепочек РНК оказались более эффективными катализаторами. Мы отделили их для следующего раунда копирования. Затем проделали это снова и снова. В результате такого целенаправленного отбора мы смогли получить молекулы нуклеиновых кислот, которые катализируют копирование других РНК с относительно малой длиной цепи.


 К сожалению, они были все еще очень далеки от саморепликации, т.е. от способности копировать полимеры с собственной последовательностью нуклеотидов. Недавно принцип саморепликации РНК получил подтверждение благодаря исследованиям Трэйси Линкольн (Tracey Lincoln) и Джеральда Джойса (Gerald Joyce) из Исследовательского института Скриппса, создавших два вида рибосомальных РНК, каждая из которых могла делать копии другой, соединяя вместе два более коротких отрезка РНК. К сожалению, в экспериментах было необходимо присутствие уже существующих фрагментов РНК нужной длины и структуры, которые в данном опыте не образовывались самопроизвольно. Тем не менее исследования показывают, что РНК обладают примитивной каталитической активностью, позволяющей (хотя бы отчасти) обеспечивать собственную репликацию.


 Исследования, проведенные в начале 1970-х гг., показали, что мембраны действительно могут самопроизвольно формироваться из простых жирных кислот, однако они представляют собой внушительный барьер, препятствующий проникновению нуклеотидов и других высокомолекулярных компонентов в клетку. Следовательно, если первые мембраны состояли из жирных кислот, то протоклетки в первую очередь должны были освоить клеточный метаболизм, позволяющий самостоятельно синтезировать макромолекулы (в том числе нуклеотиды). Однако проведенная в нашей лаборатории работа показала, что молекулы такого размера, как нуклеотиды, на самом деле могут легко проникать сквозь мембраны при условии, что они представляют собой более «примитивную» версию, нежели их современные аналоги. Данное открытие привело нас к разработке и проведению простого эксперимента, моделирующего способность протоклеток к копированию своего генетического материала с использованием в качестве строительного материала компонентов окружающей среды. Мы создали пузырек, окруженный мембраной на основе жирных кислот, который содержал короткий участок одноцепочечного фрагмента ДНК. Как и ранее, ДНК должна была служить шаблоном для синтеза новой цепи. Затем мы выдержали пузырек в химически активных версиях нуклеотидов. Нуклеотиды самопроизвольно прошли сквозь мембрану и, попав в протоклетку, присоединились к цепи ДНК, соединившись между собой и образовав комплементарную цепочку. Данный эксперимент стал одним из подтверждений гипотезы, что первые протоклетки содержали РНК (или что-то сходное с ними) в смеси с какими-то другими незначительными компонентами и реплицировали свой генетический материал без помощи ферментов. 


➡ Да будет деление!


 Для того чтобы протоклетки стали способными к самовоспроизводству, они должны были «освоить» рост, удвоение своего генетического материала и деление на две эквивалентные «дочерние» клетки. Что касается роста, эксперименты показали, что примитивные пузырьки могут увеличиваться в размерах двумя различными способами. В 1990-х гг. Пьер Луиджи Луизи (Pier Luigi Luisi) с коллегами из Федерального технологического института в Цюрихе, Швейцария, добавил жирные кислоты в раствор, окружающий протоклетку. Сразу после этого мембраны включили в себя дополнительные молекулы, увеличив площадь своей поверхности. По мере того как вода и растворенные вещества начали медленно проникать внутрь мембраны, протоклетка стала увеличиваться в размерах. Второй способ, который был обнаружен нашей лабораторией, точнее аспиранткой Ирен Чен (Irene Chen), включает в себя «соревнование» между протоклетками. Модельные протоклетки помещались в раствор, после чего под действием осмоса (т.е. стремления воды проникнуть в клетку и выровнять концентрации растворов внутри и вне ее) они поглощали воду и раздувались. Мембраны таких раздувшихся пузырьков растягивались и, чтобы снизить натяжение, включали в себя новые молекулы жирных кислот, что приводило к уменьшению общей энергии системы и одновременно к росту размеров такой протоклетки. При этом протоклетка поглощала жирные кислоты, необходимые для увеличения поверхности мембраны, из мембран своих «соседей», чьи оболочки не были растянуты; соседние пузырьки, соответственно, уменьшались в размерах.


 При наличии нужных строительных блоков формирование протоклеток не кажется слишком уж сложным: мембраны образуются в результате самосборки, нуклеиновые полимеры формируются в результате самосборки; оба компонента могут соединиться любым способом: например, мембрана может сформироваться вокруг уже образовавшегося нуклеинового полимера. Подобные пузырьки, заполненные водой и РНК, способны, как было сказано выше, расти, поглощать новые молекулы, конкурировать с «соседями» за питательные вещества и делиться. Но чтобы стать живыми, они также должны воспроизводить свой генетический материал и эволюционировать. В частности, им необходимо «уметь» разделять свои двойные нити РНК на отдельные цепочки, чтобы каждая могла перейти в дочерние клетки и функционировать там как матрица для синтеза новой двойной нити. Этот процесс не мог стартовать сам по себе, но мог запуститься в результате небольшого толчка извне.


 Представим вулканический район на противоположной, холодной поверхности ранней Земли (в то время, когда Солнце светило лишь на 70% от своей современной мощности). В таком месте должны были быть лужи холодной воды, возможно, частично покрытые льдом, но остающиеся жидкими за счет тепла горячих горных пород на дне. Разница температур приведет к появлению восходящих и нисходящих токов (горячего и холодного течения), так что время от времени все протоклетки в воде будут подвергаться разрушительному воздействию тепла в тот момент, когда течение будет проносить их мимо раскаленных пород, и постоянно охлаждаться, когда горячая вода будет подниматься и смешиваться с основной массой холодной воды. Резкое нагревание может вызвать разделение двойной спирали на отдельные цепочки, охлаждение — то, что из одиночных цепочек, используемых в качестве шаблона, образуются две новые спирали, точные копии изначальной.

Горячая часть водоема 4 Мембрана включает в себя новые & молекулы & жирных кислот и растет 5 Протоклетка делится, и «дочерние» . клетки %% воспроизводят цикл Дочерние; клетки Жирные молекулы 1 Нуклеотиды проникают в протоклетку и формируют комплементарную цепь ^ Нуклеотиды 2 Протоклетка

 Относительно просто представить, как протоклетки, содержащие РНК, начали эволюционировать. Метаболизм мог усложняться постепенно, по мере того как новые рибозимы обеспечивали клеткам синтез собственных необходимых макромолекул из более простых и доступных составляющих. Затем протоклетки могли к прочим своим химическим «трюкам» добавить биосинтез белка. Благодаря своим удивительным многообразию и изменчивости белки постепенно взяли на себя часть функций РНК, начав работать «ассистентами» при копировании генетического материала и все больше участвуя в осуществлении метаболизма. Позднее живые организмы могли «научиться» синтезировать ДНК, что дало им преимущество обладания более надежным носителем генетической информации. С этого момента РНК-мир превратился в мир ДНК, и жизнь стала такой, какой мы ее знаем.

 Алонсо Рикардо и Джек Шостак 


 «В мире науки» № 11, 2009. Стр. 25-33. Перевод Т.А. Митиной.


Развернуть
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме Появление жизни (+1 картинка, рейтинг 7.7 - Появление жизни)