Результаты поиска по запросу «

Наука немцы

»
Запрос:
Создатель поста:
Теги (через запятую):



это интересно длиннопост под катом продолжение ...Всё самое интересное 

Почему свиньи любят валяться в грязи?

Всё самое интересное,интересное, познавательное,,разное,это интересно,длиннопост,под катом продолжение

Стремление свиней валяться в грязи, казалось бы, давно изучено и тщательно препарировано. Но исследователь из Нидерландов взглянул на это типичное поведение хрюшек со свежей точки зрения.
У свиней нет рабочих потовых желёз, и оттого грязевые ванны им просто необходимы для регулирования температуры тела. Кроме того, грязь помогает избавляться от паразитов. Эти две главные причины заставили свиней найти «грязевой» выход из затруднительного положения. Такова текущая версия науки. Но Марк Бреке (Marc Bracke) из университета Вагенингена (Wageningen UR) считает, что его предшественники перепутали причину и следствие.
Согласно Марку, свиньи не приняли практику валяния в грязи из-за своих нефункциональных потовых желёз, а наоборот, эти животные (их предшественники) не развили когда-то данные железы именно из-за того, что так много любили валяться в грязи и охлаждение при помощи пота им не требовалось.
Чтобы обосновать свой взгляд, Бреке проанализировал 60 научных работ, освещающих практику валяния в грязи (либо катания по земле) как у свиней, так и у животных, находящихся с ними в родстве той или иной степени, в частности, у носорогов, слонов, бизонов, буйволов, оленей и бегемотов. Марк сопоставил мотивировку для такого поведения и решил, что предотвращение перегрева — не определяющий фактор.
Олени, например, таким способом оставляют пахучие метки, играющие большую роль в привлечении партнёра. Как рассказывает BBC, эта сторона грязевых ванн может быть важна и для свиней тоже. Помимо того, считает Марк, для свиней такое поведение может быть просто «признаком хорошей жизни» и «вознаграждением самим по себе». И восходит, мол, эта любовь к воде ещё к очень дальним предкам.
Бреке рассуждает, что тягу к воде некоторые линии животных могли пронести сквозь века ещё от рыб и более поздних созданий, которые вели полуводный образ жизни.
Плескание на мелководье также, должно быть, являлось важной поворотной точкой в эволюции китов. А у них из ныне живущих созданий самые близкие родственники — гиппопотамы. Да и свиньи к ним генетически куда ближе, чем можно было бы предположить, ориентируясь на облик. Не зря в последнее время биологи даже ввели надотряд китопарнокопытных.
При этом свиньи, как и сородичи бегемоты, достаточно массивны и неплохо вооружены мощными клыками и резцами, чтобы не слишком опасаться хищников, способных подкараулить добычу в неглубокой воде. Это, по мнению Марка, один из факторов, благодаря которому свинообразные позволили себе сохранить любовь к водным процедурам на протяжении длинной эволюции этой ветви живого мира.


Всемирная история игрушек

Всё самое интересное,интересное, познавательное,,разное,это интересно,длиннопост,под катом продолжение

6000 до н.э. – появление игр-прообразов современных шахмат. Чатуранга – самая древняя из них, родилась в Индии. Сходство с современными классическими и китайскими шахматами очевидны.
4000 до н.э. – настольные игры древнего Вавилона, вероятно, также были предками шахмат и шашек.
3000 до н.э. – игра, напоминающая трик-трак, очень популярна в Древней Самарии. Египтяне, греки, а позже и все европейцы играли в подобные трик-траку игры на протяжении тысячелетий.
Каменными шариками развлекались в Египте. Такие же, но стеклянные были популярны в Соединенных Штатах в 1800-ых.
2000 до н.э. — египтяне играют в игру, напоминающую современные шашки.
Они же играли в куклы, сделанные из веревок, ткани и бумаги.
В тоже время в Скандинавии появляются первые железные коньки.
1000 до н.э. — бумажные змеи в Китае. Но, возможно, они парили в небе Китая и раньше.
Игрушка йо-йо была очень популярна у древних греков. Название, под которым знаем её мы, запатентовал Д. Дункан в 1930 г.
6 век н.э. – в Японии появляются куклы-неваляшки. Наверное, это самая старая игрушка, в которой человек сознательно использовал принцип устойчивого равновесия.
969 — распространение карточных игр на территории Азии.
1759 — Джозеф Мерлин пропагандирует катание на роликах.
1790-ые — появилась первая русская матрешка, она сразу снискала небывалое признание, как символ русского народного искусства. Прообразом матрешки явилась завезенная с острова Хонсю фигурка буддийского монаха Фукуруму, в которой находилось несколько фигурок, вложенных одна в другую.
1800-ые – появление площадок для игр. Авторы идеи — американские реформаторы, которые искали приемлемые варианты организации игр для детей в городах, где парки и дворы были слишком тесны и неудобны. Вдохновение американские чиновники, очевидно, черпали в благоустроенных зонах отдыха Берлина. Благодаря финансированию меценатов, детские площадки вскоре обзавелись качалками и качелями.
1840 – в США производителю кукол удается получить патент — впервые кукол начинают выпускать серийно.
1843 — уроженец Штата Массачусетс С.Б. Айвс представляет вниманию американской публики первую же американскую настольную игру The Mansion of Happiness (Дом Счастья).
1867 – Парчизи — азартная настольная игра, современная разновидность «го» — индийской игры, относящейся к трёхсотым годам нашей эры. Парчизи до сих пор остается самой продаваемой игрой в Америке.
1879 – Кубики с алфавитом. Как оказалось, самый лучший способ обучения грамоте.
Маргарет Штайфф по образцу из журнала делает несколько игрушечных слонов в качестве подарка. Затем она шьёт медведя, пуделя и осла. Через год творчество Маргарет становится настолько популярным, что хобби плавно перетекает в семейный бизнес. За каждым медвежонком Штайфф своя история, хорошо известная коллекционерам.
1884 – набор из восьми паровозиков. Таково начало истории шведской компании BRIO, крупнейшего производителя экологических деревянных игрушек. Сегодня игрушки BRIO продаются более чем в сорока странах мира.
1886 – первые модели стреляющего оружия для детей. Весьма опасные по причине своей убойности «стволы» пугают родителей. Появление ружей связано с послевоенным периодом, когда некоторые производители оружия переделывали свою продукцию для нужд детворы. Пистолеты Пенни и другое реально выглядящее оружие появилось в 1880-ые годы.
1887 — Йоханом Мезелем изобретена говорящая кукла. В 1820-м она была модернизирована Томасом Эдисоном — в куклу вмонтировали фонограф.
Конец 1880-ых – увлечение Маджонгом — китайской игрой, чем-то похожей на «домино наоборот».
1889 – патент на, как мы его называем, снегокат – легкоуправляемые, благодаря направляющей лыже, сани.
1890 — уроженец Австралии, Лоренс Харгрэйв изобретает трехмерного бумажного змея.
1898 — Ганд начинает массовое производство музыкальных и мягких игрушек.
1900 – 22-летний Джошуа Лайонел Кауэн в качестве рекламы товара запускает в витрине магазина поезд с двигателем на батарейках. К его удивлению, клиенты больше интересуются покупкой игрушечного поезда, чем товарами магазина.
1902 – начало Тедди-мании
1903 — Эдвин Бинней и C. Гарольд Смит выпускают первую коробку мелков Крэйола.
1913 – Чемпион по прыжкам с шестом, доктор медицины А.К. Гильберт изобретает Набор Строителя (BRIO), состоящий из металлических деталей. С помощью конструктора дети собирают модели: от колес обозрения до небоскребов.
1914 — Чарльз Пажо разрабатывает игрушку, подобную Набору Строителя, названную Игрушкой Ремесленникоов (Playskool), ориентированную на маленьких детей.
Игл Раббер начинает производство воздушных шаров. Игры с шарами – не просто забава, это лучший способ развить чувства баланса и координации, улучшить моторику.
1915 — Джонни Грулл, газетный художник, начинает продажу кукол Энн — копий куклы, сделанной для дочери Марселлы.
1916 — Джон Ллойд Райт, сын архитектора Франка Ллойда Райта, изобретает игру Lincoln Logs (Playskool), набор для создания игрушечного городка. Очевидно, Джон был вдохновлен текущим проектом отца — сейсмостойкой Имперской Гостиницей в Токио.
1922 — когда дети Джека Прессмана стали бояться посещений доктора, он придумал игру «Сумка Доктора».
1924 — А.А. Милн пишет историю о Винни-Пухе.
1927 — изобретен особый вид пластмассы — полистрол. Хотя один из видов пластмассы, целлулоид, был изобретен в 1860-ых, полистрол стал первым достаточно прочным материалом, чтобы удовлетворить запросы производителей игрушек.
1928 — Уолт Дисней создает Микки Мауса.
1929 – в Соединенных Штатах очень популярен йо-йо. Предприниматель Дональд Дункан заметил игрушку в Лос-Анджелесе. Он покупает маленькую компанию за 25 тысяч долларов, а тридцать лет спустя продажи Дункана переваливают за 25 миллионов.
1930 – все увлечены игрой в кольца, которая и по сей день остается классической игрой детворы. Пять разноцветных колец набрасываются на стержни.
1931 — Альфред М. Баттс, безработный архитектор из Покипси, штат Нью-Йорк, изобретает игру в слова — Крестословицу. В 1948 Баттс продает права на игру Джеймсу Бруно, который регистрирует её под названием Scrabble (Хасбро).
1932 — Оле Кирк Кристиансен основал свою компанию, начав с производства стремянок, гладильных досок и деревянных игрушек. Через два года на свет появилось слово LEGO, которое образовалось от выражения «LEg GOdt», что в переводе с датского означает «увлекательная игра».
1935 – Игра «Монополия» стала бестселлером в Америке. Изобретена она в 1933 г. безработным монтером Чарльзом Дэрроу из Пенсильвании во время Великой депрессии. Сегодня «Монополия» выпускается на 26 языках и продается в 80 странах. В нее сыграло более полумиллиона человек. В 1975 году в США было отпечатано денег для игры «Монополия» в два раза больше, чем настоящей валюты.
1939 — Уильям Грубер, настройщик фортепьяно из Портленда, приходит к мысли выпускать цветные трехмерные изображения. Доступнее покупателям нежели телеприемники, которые к тому времени еще широко не распространены, они пользуются огромной популярностью.
Начало 1940-ых – появление авиамоделей из пластмассы. Первоначально они служили конструкторам авиационной промышленности для демонстрации проектов заказчикам, теперь же модельный бизнес коснулся и индустрии игрушек. До этой поры модели делали из дерева.
1942 — Золотые Книжки-малышки (Golden Books) приводят в восхищение детей и их родителей.
1943- Игра Змеи и Лестницы становится вновь популярной.
1949 – в процессе лечения полиомиелита Элеонор Абботт изобретает интересные игры, среди них всем известная Кэндилэнд.
Появление Глупой Замазки или Липунчика. Игрушка была побочным результатом поиска синтетического заменителя каучука. Джеймс Райт, инженер-химик компании Дженерал Электрик, разработал цветной силикон — материал который подпрыгивал, когда был свернут в шар, а в свободной форме растягивался как каучук.
1952 – Эдвард Хаас создаёт PEZ-дозаторы — уникальную комбинацию игрушки
и конфет. Для большей привлекательности у американцев на дозаторе появляется фигурка известного персонажа мультфильмов. В результате продукция начинает пользоваться грандиозным успехом у детей.
Джек Оделл создает игрушки в Спичечной Коробке (Matchbox). Свою первую медную модель он делает для дочки, которая не желала расставаться с игрушками даже в школе. Сегодня каждый год продается более ста миллионов мини-игрушек Matchbox.
1957 — время Летающих тарелок. В 20 веке только компания WHAM-O произвела более ста миллионов пластмассовых дисков.
1959 — Эллиот Хандлер и его жена Рут создают куклу Барби. Сегодня каждую секунду продается по одной кукле Барби.
Артур Мелин и Ричард Нерр начинают продажу хулахубов. Мерлин и Нерр фактически возродили игрушку, которая была известна за 1000 лет до н.э в Египте. В первый же год было продано около 15 миллионов обручей.
1964 – рождение Чебурашки.
1965 — Стэнли Вестон создает куклу для мальчиков. Герой заимствован из телешоу и назван Лейтенантом Джо. К удивлению многих производителей игрушек, убежденных в том, что мальчики не играют с куклами, Джо становится более популярным, чем телевизионный герой. Интересен тот факт, что подругу Джо, выпущенную год спустя, ожидал полный провал.
На международной Игрушечной Ярмарке в Нюрнберге демонстрируется Спирограф.
С его помощью и с помощью набора цветных ручек можно создать сотни геометрических фигур и разнообразных эффектов.
1969 — Parker Brothers из нового материала — пены полиуретана производят шар Нерф — безопасную игрушку для дома. К концу года продано более 4 миллионов шаров.
1971 — Ханс Бек создает первые комплекты игровых наборов Playmobil.
1972 — Magnavox демонстрирует Одиссею — первую видео-игру, сюжет которой — примитивная форма пэдлбола. В этот бизнес вступают другие компании, и к 1976-ому году появляются хоккей, теннис и сквош.
1973 — Дейв Арнезон и Скотт Гигакс изобретают игру Темницы и Драконы, что приводит к появлению новой категории игр: фэнтези и приключения.
1974 — четыре инженера создали Magna Doodle — доску для рисования специальной ручкой с магнитным стержнем, который не пачкает рук малышей. Этот шедевр был создан в поисках беспыльной классной доски. Magna Doodle предполагает широчайшее разнообразие в использовании. На сегодняшний день продано около 50 миллионов экземпляров.
1977 — волна популярности персонажей Звездных войн после выхода в свет фильма Джорджа Лукаса. Они доминируют на рынке игрушек-персонажей.
1982 — Кубик Рубика — самая популярная головоломка 20 века, изобретённая венгром Эрнё Рубиком в 1982 году. Кубик выпускался по лицензии во многих странах мира, в том числе в СССР.
1983 – появление Нинтендо, игровой видео-системы. 52 цвета, реалистичные звуковые эффекты — всё это привлекает внимание розничных продавцов.
1987 — возможно, первая бесспорно интеллектуальная игрушка — медвежонок Тэдди, обученный вслух читать книжки.
1989 — появление Геймбой – переносной системы видео-игр на питании от батареек (Нинтендо).
1997 – начало продаж Тамагоччи, которые стали хитом среди игрушек. Но если общение с Тамагоччи фактически ограничивалось общением с маленьким экранчиком, символизирующим это существо, то с Фёрби было всё иначе.
1998 — в начале года было налажено производство Фёрби, а в ноябре первые Ферби появились в продаже и сразу же стали пользоваться огромной популярностью. В магазинах одному покупателю в руки отпускалось не более 2-х игрушек.
1998 – накануне рождества Хохотунчик Элмо оккупировал все полки магазинов.


Умершие люди какое-то время могут продолжать двигаться и даже стонать

Всё самое интересное,интересное, познавательное,,разное,это интересно,длиннопост,под катом продолжение

Действительно, мертвые совершают какие-то движения в течение нескольких часов после смерти, пока не наступит трупное окоченение. Но даже и после этого можно замечать какие-то движения.
Каждое совершаемое нами движение — это результат электрохимических процессов. Химические вещества хранятся в нервных окончаниях и выделяются в течение небольшого времени после смерти. Иногда это вызывает движение сократительных мышц, в результате чего наблюдается легкое подергивание конечностей. Доктор Эрин Крам приводит случай с полицейским, убитым в перестрелке. В течение 3 ч. его коллеги пытались добраться до него, поскольку видели, что у него дергаются ноги и шевелится одна рука. Когда, наконец, им удалось добраться до тела и перенести его в безопасное место, оказалось, что полицейский получил две пули в голову и умер мгновенно. Обычно в таких случаях наблюдается подергивание ног и сцепление пальцев рук. Но это просто химическая реакция, при которой мышечная ткань реагирует на получаемую стимуляцию, хотя она не исходит от функционирующего мозга.
Опровергая многие городские легенды, могу сказать, что трупы не садятся на столах в морге и не начинают говорить. Однако, до того как стало практиковаться бальзамирование, разложение тканей трупа вызывало скопление газов и могло приводить к случайному движению ноги, руки или к повороту головы. Иногда даже раздавался стон, когда воздух выходил из тела через голосовые связки.


Пупок – отличное место для обитания и размножения микробов

Всё самое интересное,интересное, познавательное,,разное,это интересно,длиннопост,под катом продолжение

Ученые из университета Северной Каролины рассмотрели пупок не с эстетической или практической точки зрения, а как рассадник бактерий. По их мнению, пупок – отличное место для обитания и размножения микробов.
Пупок отлично защищен, что делает его привлекательным местом для кожных микробов. Также, мало кто моет эту область с мылом, и поэтому там можно обнаружить самые разнообразные микроорганизмы, такие как эпидермальный стафилококк, колонии желтого микрококка и псевдомонас. Еще одно преимущество пупка – в нем не выделяется никаких особых секретов и жиров, как, к примеру, под мышками или в носу, и поэтому микрофлора пупка достаточно разнообразна.
«Люди страшно удивляются, когда узнают, что происходит у них в пупке», — рассказывают исследователи, обнаружившие, что лишь единицы моют область пупка с мылом. В 500 мазках они обнаружили практически все виды бактерий, живущих на коже человека, а также различные плесени и грибки.
Среди других интересных выводов работы можно выделить следующие. Торчащие наружу пупки – большая редкость: лишь у 4% участников была подобная форма пупка. При этом, их микрофлора не отличалась от микрофлоры глубоких пупков. Более волосатые пупки привлекают больше бактерий. В пупке накапливаются не только микроорганизмы, но и ниточки одежды, отмершая кожа, пот, жир и пыль. Самыми привлекательными с эстетической точки зрения считаются маленькие втянутые пупки.


Человек на 90% состоит из микробов

Всё самое интересное,интересное, познавательное,,разное,это интересно,длиннопост,под катом продолжение

Человеческое тело, оказывается, почти целиком состоит из микроорганизмов. Однако пугаться прежде времени не стоит, пишет: эти существа — не чужеродные формы жизни. Для триллионов микроскопических жизненных форм человеческий организм является родным домом.
«Мы, по сути, лишь на 10% люди, а все остальное — микробы», — уверяет доктор Рой Д. Слитор из ирландского Института Корка. За четыре года основательного изучения предмета он пришел к выводу о том, что истинная роль бактериальных популяций, проживающих в человеческом организме, незаслуженно умаляется.
Наши взаимосвязи с одноклеточными существами оказались настолько тесными, что прогрессивные ученые теперь рассматривают человека и населяющих его бактерий в качестве единого сверхорганизма. «На сегодняшний день бактерии рассматриваются в качестве виртуального органа, продукты жизнедеятельности которого значительно выше, чем у печени», — объясняет доктор Слитор.
По его данным, в человеческом теле содержится порядка 500 различных видов бактерий. Благодаря их непрестанному размножению в организме взрослого человека проживает около 100 трлн одноклеточных существ — почти в десять раз больше, чем те несколько триллионов клеток, из которых состоит собственно организм человека. К примеру, только в кишечнике содержится почти 2 кг бактерий.
По словам доктора Слитора, бактерии не только наши спутники, но и незаменимые помощники. «Это бактериально-человеческое взаимодействие по большей части носит характер симбиоза, — рассказывает ученый. — Это означает, что в обмен на продовольствие бактерии участвуют в процессах пищеварения, производства витаминов и укрепления нашей иммунной системы». Кроме того, дружественные микроорганизмы защищают хозяина от возбудителей инфекционных заболеваний, сражаясь с «враждебными» бактериями.
Для любителей йогуртов и других «живых» кисломолочных продуктов эта новость, безусловно, хорошая. Однако доктор Слитор предупреждает, что укрепляющие способности «пробиотических» продуктов весьма недолговечны. «Большая часть этих бактерий не задерживаются в нашем организме. Они проходят сквозь тело, не сумев организовать колонию», — с грустью констатирует он. С другой стороны, постоянное употребление такого рода продуктов может способствовать укреплению колоний полезных бактерий. Особенно это касается случаев, когда организм ослаблен приемом антибиотиков.

Развернуть

Назад в прошлое Великая Отечественная Война Вторая мировая война украл сам ...Всё самое интересное 

Редкие фотографии Великой отечественной войны и Второй мировой войны

Лейтенант Сергей Васильевич Ачкасов (1919 — 14.03.1943), совершивший два воздушных тарана на Воронежском фронте, у истребителя МиГ-3.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



Лейтенанты Петр Андреевич Адкин (крайний справа) и Александр Андреевич Гуйвик (второй слева) с сослуживцами.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Леонид Утесов на крыле истребителя Ла-5Ф, построенного на средства его ансамбля «Веселые ребята». Момент передачи машины в войска.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Летающая лодка PBY-5A «Каталина» (PBY-5A Catalina) береговой охраны США на ремонте в замерзшей бухте острова Кадьяк (Kodiak), Аляска.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Летчик Борис Еремин на истребителе Як-1Б с дарственной надписью «Лётчику Сталинградского фронта гвардии майору Ерёмину от колхозника колхоза «Стахановец» тов. Головатого».
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Летчик Семен Сибирин поздравляет своего французского коллегу Альбера Литтольфа с очередной победой.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Летчики отдельной авиационной эскадрильи «Нормандия» и 18-го гвардейского истребительного авиаполка у самолета Як-1Б.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Летчики-асы 9-й гвардейской авиационной дивизии у истребителя Белл P-39 «Аэрокобра» Г.А. Речкалова.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Линкор «Аризона» (USS Arizona), потопленный в результате налета японских самолетов на Перл-Харбор 7 декабря 1941 года.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Лондонский мальчик на развалинах своего дома, где погибли его родители после попадания немецкой ракеты Фау-2.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Мальчик лет семи на месте прошедшего боя, у взорванного советского танка Т-34-85. Позади видны еще два таких же танка.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Мария Дементьевна Кучерявая, 1918 года рождения, лейтенант медицинской службы. На фронте с 22.06.1941 г. В сентябре 1941 г. во время боев на Крымском полуострове получила контузию.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



Мария Долина, Герой Советского Союза, гвардии капитан, заместитель командирa эскадрильи 125-го гвардейского бомбардировочного авиационного полка 4-й гвардейской бомбардировочной авиационной дивизии.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Мария Тимофеевна Шальнева (Ненахова), ефрейтор 87-го отдельного дорожно-эксплуатационного батальона, регулирует движение военной техники недалеко от рейхстага в Берлине.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Марш пленных немцев по Москве - впереди многотысячных колонн солдат и офицеров ведут группу из 19 немецких генералов.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Маршал Советского Союза Г. К. Жуков и генерал Д. Эйзенхауэр в Ленинграде.Посещение Д. Эйзенхауром Москвы и Ленинграда произошло в середине августа 1945 г. после личного приглашения Г. К. Жукова.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Маршал Советского Союза Георгий Константинович Жуков сфотографирован на открытом воздухе.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



Маршал Советского Союза Иван Степанович Конев (1897-1973) и американский генерал Омар Брэдли (Omar Bradley, 1893-1981) на встрече в апреле 1945 года.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Маршал Советского Союза, командующий 2-м Украинским фронтом Родион Яковлевич Малиновский, выходя из машины на улице Будапешта, принимает доклад подчиненного.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Медик из состава 48-го медицинского батальона 2-й бронетанковой дивизии армии США делает перевязку раненому немецкому солдату.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Меньше чем через полгода в ходе советского наступления под Сталинградом эта армия будет окружена и разгромлена. 2 февраля 1943 года 6-я армия капитулировала.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Михаил Егоров и Мелитон Кантария выходят со знаменем на крышу Рейхстага. Хотя это было не первое установленное на Рейхстаге красное знамя, но именно оно стало Знаменем Победы.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Младший лейтенант разведки Японии Хиро Онода сдается филиппинским властям.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Младший сержант Константин Александрович Шутый (18.06.1926-27.12.2004) (слева), брат Михаила Шутого, с однополчанином, также младшим сержантом.

ЬГО? ßyfKR,Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



Младший сержант, минометчик — Николай Поликарпов на огневой позиции под Киевом. 1-й Украинский фронт.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



Могила американского летчика, сделанная из патронов калибра 12,7 мм от пулеметов его самолета Р-47 «Тандерболт». Могила сделана 8 августа 1944 года четой французских беженцев.
Г ГГ- ' • ' ' •». , |ц» HIM ÍI |Г \ /// «и /пп.,jjiiiii иш //íiummnH'i,Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Могила советских солдат (судя по трем советским каскам) и пулемет «Максим». На заднем плане видно еще более десятка могил - уже немецкие (каски на столбиках немецкие).
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Морской пехотинец американской 5-й дивизии, убитый японским снайпером выстрелом в голову (видно пулевое отверстие на каске).
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Моряки советского эсминца проекта 7 «Сокрушительный» с корабельным питомцем, район носовых торпедных аппаратов, вид в нос.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



На Курской дуге. Обкатка пехоты танками. Красноармейцы в окопе и танк Т-34, который преодолевает окоп, проходя над ними.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



На улице освобожденного Сталинграда. Зима 1943 года.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



На фото запечатлён трагический момент избиения немецкой подводной лодки U-118.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Начало контратаки одного из подразделений 270-й стрелковой дивизии советской 7-й гвардейской армии на Курской дуге.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Начальник политуправления 4-го Украинского фронта генерал-майор Леонид Ильич Брежнев (в центре), будущий руководитель СССР в 1964-1982 годах, во время Парада Победы.

«а ■*s *,Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



Начальник связи 51-го МТАП Быков В.В. инструктирует стрелков-радистов перед перелетом Кольберг (Германия) - Пернов (Эстония). Слева направо Михалев, Карпов, Арчаков, Шишкин, Волков, Чеканов, Быков.
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам


Неизвестные партизанки 1-й Пролетарской бригады НОАЮ, вооружены чешскими ручными пулеметами ZB vz. 26. Село Жарково недалеко от Белграда накануне боев за город.

Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам



Неизвестные советские девушки-снайперы у блиндажа. На шинелях сержантские погоны, в руках винтовки Мосина с оптическим прицелом ПУ (Прицел Укороченный).
Всё самое интересное,интересное, познавательное,,разное,Назад в прошлое,Великая Отечественная Война,Вторая мировая война,World War II, The Second World War,украл сам

Развернуть

это интересно факты обо всем длиннопост под катом продолжение ...Всё самое интересное 

Факты о музыке

Всё самое интересное,интересное, познавательное,,разное,это интересно,факты обо всем,длиннопост,под катом продолжение

Пауки, если заиграешь перед ним на скрипке, выползают из своих укрытий. Хотя, конечно, не для того, чтобы послушать музыку: паутина от звуков скрипки колеблется, и паук думает, что попалась добыча.
Свист считается в исламских странах «музыкой дьявола».
В средние века крыс выводили из городов дудочкой. Существовала даже специальная профессия: дудочник-крысолов. Кстати, когда недавно в одном старинном английском замке состоялся рок-концерт, крысы из замка тоже начисто исчезли.
Уникальный случай в истории музыки. В 1792 году на премьере оперы «Тайный брак» композитора Чимарозы зрители хлопали так громко, что артисты были вынуждены исполнить на «бис»… всю оперу целиком.
Однажды Карузо явился в банк без всяких документов и ему пришлось спеть кассиру, чтобы тот удостоверился, что он действительно Карузо. Выслушав арию из «Тоски», кассир согласился, что это удостоверяет личность получателя и выплатил деньги, а Карузо потом признался, что больше никогда так не старался.
Шаляпин и Горький практически в одно и то же время пробовались в хор. Горького взяли, Шаляпина нет.
Первая фонограмма появилась еще в конце 19 века: один итальянский композитор возил с собой на выступления фонограф, на котором была записана фортепьянная партия его произведений.
Николай I не любил композитора Глинку. И так сильно, что приказал заменять гауптвахту для провинившихся офицеров посещением оперы «Руслан и Людмила».
Проведенное в Америке исследование показало, что больше всего самоубийств, разводов и прочих личных катастроф наблюдается среди тех, кто любит кантри-музыку.
Самой популярной свадебной музыкой в США является песня Уитни Хьюстон «I will always lоve Yоu». По странному совпадению обстоятельств, она же – самая популярная похоронная музыка в Великобритании.
Прослушивание громкой музыки пагубно сказывается на центральной нервной системе. Так что громкая музыка в автомобиле — это не только угроза безопасности движения, но и потенциальная угроза здоровью. Поэтому в каждом районе Нью-Йорка стоит определенный шумовой предел, за превышение которого полагается штраф. А в Английском городе Бирмингеме полиция пошла дальше — за прослушивание в автомобиле громкой музыки полагается конфискация самого автомобиля. Однако качественная музыка в автомобиле — это прекрасный способ скоротать время в пути и сделать дорогу более приятной.


Уникальные возможности человека

Всё самое интересное,интересное, познавательное,,разное,это интересно,факты обо всем,длиннопост,под катом продолжение

Человеческий организм создан с большим запасом возможностей. Установлено, что позвоночник человека в экстремальных условиях может выдержать нагрузку в 10 тонн.
Запасом прочности, наделенным Природой, человек пользуется очень редко, один-два раза за всю свою жизнь, а иногда этот запас может оказаться и вовсе невостребованным. Запас прочности – гарантия нашего выживания, биологическая защита, и используется лишь тогда, когда речь идет о жизни и смерти. Страх и чувство самосохранения в момент экстремальной ситуации «разрешает» организму человека использовать полностью этот запас, но большинство людей прибегают к своему неприкосновенному запасу довольно редко. Но однажды использовав весь запас своих возможностей, человек потом всю оставшуюся жизнь не перестает удивляться, как это ему удалось.
Перед лицом смертельной опасности, когда угроза жизни колоссальная, и смерть, кажется, неминуема, человеческий организм может творить чудеса. Примеров тому много.
Пожилой человек, когда за ним погнался разъяренный бык, буквально перемахнул через двухметровый забор, хотя в молодости не был спортсменом.
Полярный летчик ремонтировал свой самолет и вдруг увидел за своей спиной белого медведя, который легонько толкнул своей лапой летчика в плечо, как бы приглашая его оглянуться. В следующие доли секунды летчик уже стоял на крыле самолета, находящегося над поверхностью земли на высоте около двух метров. Позже летчик так и не смог объяснить, как ему удалось это сделать.
Под колесом легкового автомобиля оказался ребенок, и его мать, ради спасения своего чада, поднимает машину, словно машина не имела веса.
В Санкт-Петербурге двухлетний ребенок вывалился из окна 7 этажа, его мать еле успела ухватить свое дитя одной рукой; другой рукой она держалась за кирпич карниза. Причем, держалась не всей кистью руки, а только указательным и средним пальцами, зато «мертвой хваткой». Когда женщину снимали, то ее спасители с большими усилиями еле разжали ее пальцы. Потом еще несколько часов успокаивали и уговаривали женщину, чтобы она отпустила руку своего ребенка.
Известен случай, когда в полете под педаль в кабине самолета попал болт, – управление заклинило. Чтобы спасти свою жизнь и машину, летчик так нажал на педаль, что срезал, как былинку, болт.
В газете «Неделя» было опубликовано интервью с летчиком И.М. Чисовым, самолет которого в воздушном бою был сбит «мессершмиттом» в январе 1942 года над Вязьмой. «…самолет стал падать «брюхом» вверх. Надо было покидать машину. Астролюк, через который можно выбраться, оказался внизу под моей головой (а сам я – вверх ногами). Ну, и высота начала сказываться: шланги, ведущие к кислородным аппаратам, были перебиты. И защелку крышки люка заклинило! Если бы мне до этого рассказали, что астролюк можно выбить ударом кулака, ни в жизнь бы не поверил; но я его открыл именно таким образом (до сих пор не пойму, как это удалось), – поведал И.М. Чисов.
В доме случился пожар, и старушка – «божий одуванчик», спасая свое нажитое за всю жизнь добро, выволокла со второго этажа горящего дома громадный сундук. После пожара двое молодых, здоровых парня с трудом занесли этот сундук на его прежнее место.
В 1997 году двое изрядно подвыпивших беларуса забрались в вольер с зубрами в Беловежской пуще; им захотелось погладить зубриху. То ли ей не понравился запах алкоголя, то ли она не была настроена на лирическую волну, она не приняла нежности своих поклонников. Буквально через несколько минут их знакомства, один из них сидел на заборе, а второй, менее проворный, был слегка поддет рогом. Хмель прошла моментально, одна надежда была на ноги. По другую сторону трехметрового забора он оказался в мгновение ока. Поскольку свидетелей их рекорда не было, то сверхскоростной бег и прыжок через препятствие не попали в «Книгу рекордов Гиннеса».
В 1998 году газета «Аргументы и факты» поведала читателям о таком случае, произошедшем с плотником из таежной деревни Баженовка (Кемеровская обл.). Плотник шел по тайге и натолкнулся на спящего медведя. Испуг его был настолько велик, что он схватил лежащее рядом какое-то бревно и промчался с ним со всех ног до своего жилья километра три. Только во дворе дома плотник бросил бревно и отдышался. Позже, когда он захотел убрать с дороги это бревно, то не смог даже его приподнять. До сих пор плотник не может взять в толк, зачем ему понадобилось это бревно, ведь без него он мог бы бежать намного быстрее.
На зимней дороге случилась авария, повлекшая за собой человеческие жертвы. Чтобы спасти своего травмированного 40-летнего сына, 70-летняя женщина взвалила его себе на спину и с такой ношей прошла 13 км по глубокому снегу, ни разу не останавливаясь и не опуская своей драгоценной ноши. Когда спасатели на снегоходе пробирались к месту аварии, ориентируясь по следам женщины, то на всем пути видели только следы одной пары ног.
Возможности человека проявляются не только в стрессовых ситуациях. Но и в результате длительных тренировок, например, у спортсменов. Раньше спортсмены даже и не предполагали, что им покорится высота в 2 м 35 см, что в длину можно прыгнуть на 8 м 90 см, что можно поднять штангу в 500 кг за три движения: рывок, толчок, жим. В августе 1985 года 23-летний легкоатлет из Киева Рудольф Поварницын преодолел планку в 240 см в прыжке в высоту. А буквально через несколько дней другой легкоатлет Игорь Паклин покорил высоту 241 см. Копьеметатели преодолели 95-метровую отметку. В июне 2005 года 22-летний ямайский бегун Асафа Пауэлл установил новый мировой рекорд в беге на 100 метров – 9,77 секунды. Теперь спортсмены мечтают прыгнуть в высоту более 241 см, прыгнуть в длину за 9 м. Поднять полтонны за два движения.
Прожив свою жизнь большинство смертных так и не востребуют свои возможности, но каждому из нас приятно осознавать, что где-то в глубине тебя таятся огромные силы, что у тебя заложена колоссальная память, которые в момент смертельной опасности могут спасти тебе жизнь.


Самая умная девочка в мире

Всё самое интересное,интересное, познавательное,,разное,это интересно,факты обо всем,длиннопост,под катом продолжение

Стивен Хокинг, Билл Гейтс, Виктория Кауи — эти люди вошли в новейшую историю, как современные гении. Стивен Хокинг — один из самых влиятельных и известных в мире физиков-теоретиков. Билл Гейтс — основатель и крупнейший акционер компании Microsoft, 11 лет подряд считавшийся, по версии журнала Forbes, самым богатым человеком на планете. А одиннадцатилетняя Виктория Кауи — самая умная девочка, живущая в Великобритании.
Коэффициент интеллекта Виктории Кауи (Victoria Cowie) выше, чем уровень интеллекта основателя теоретической физики — великого Альберта Эйнштейна. IQ гениальной девочки составляет 162 балла, что на 2 пункта превышает коэффициент интеллекта гениального учёного.
Когда результаты тестов Виктории стали известны общественности, поднялся ажиотаж. «Менса» — ассоциация умнейших людей планеты — зачислила девочку в свои ряды. Четыре самые престижные частные школы Великобритании предложили юному гению стипендию. Сама Виктория призналась в том, что испытывает некоторую неловкость от того, что в таком возрасте её уже сравнивают с величайшими умами, хотя, по её словам, она получает удовольствие от признания своих способностей.
Родители Виктории и не предполагали, что их дочь обладает столь высоким интеллектом. Они видели, что у девочки неординарные способности, так как Виктория развивалась быстрее и училась лучше, чем другие дети, но что уровень умственного развития их дочери настолько высок, даже не могли себе представить.
Девчушка оказалась умнее, чем Хилари Клинтон (140), Наполеон Бонапарт (145) и Зигмунд Фрейд (156). Виктория не только умна, но и всесторонне развита, поэтому её ждут большие перспективы.
На сегодняшний день Виктория Кауи — самая умная девочка в мире. Она любит танцевать, играет на саксофоне, виолончели и фортепиано, увлекается актёрской игрой, проводит различные научные эксперименты и видит своё призвание в естественных науках. Сейчас Виктория активно изучает биологию и мечтает стать ветеринаром.


Опасность кондиционера

Всё самое интересное,интересное, познавательное,,разное,это интересно,факты обо всем,длиннопост,под катом продолжение

С наступлением жары, которая традиционно начинает терроризировать нас с середины мая, увеличивается спрос на кондиционеры. Именно они – верим мы – способны спасти нас от невыносимого зноя. В особенности на кондиционеры рассчитывают те, кто вынужден длинными, жаркими днями пребывать в закрытом помещении. Однако не следует забывать, что кондиционер не так прост. Он не только «гоняет» воздух, превращая его из раскаленного в ледяной, но еще и подвергает организм человека серьезному испытанию, так как является своего рода накопителем различных болезнетворных бактерий.
«Известно, что в кондиционерах селятся микробы, в том числе атипичные возбудители. Были случаи распространения через систему кондиционирования опаснейшей болезни легионеров (инфекционное заболевание, вызванное бактерией legionela, которое приводит к тяжелейшей форме пневмонии). Сейчас также принято говорить и о дополнительном шуме и вибрации, которые негативно влияют на вестибулярный аппарат», — рассказывает врач-пульмонолог Киевской городской клинической больницы №17 Светлана Гук.
Тщательней других следует относиться к кондиционерам людям, страдающим хроническими заболеваниями.
«Что касается тех людей, у которых есть какие-то хронические заболевания типа гайморита или хронического бронхита, то «искусственный холод» и тот перепад, который создается с температурой воздуха на улице, вызывает обострение заболеваний. А у здорового человека кондиционер может спровоцировать отек слизистой хронического характера», — добавляет специалист.
Попробуем выяснить, как можно противостоять накоплению в домашнем кондиционере болезнетворных бактерий.
«Да, грибки в оборудовании можно найти при условии, если в помещении не проводят качественную уборку. Хорошим подспорьем для размножения вредных микроорганизмов является шерсть животных и ворс с напольного покрытия. Если есть домашние животные, то именно из-за их шерсти часто забивается кондиционер. Если кондиционер установлен на кухне, то, конечно, жир также выступает неотъемлемым компонентом внутренней «начинки» аппарата», — сообщает менеджер по продажам Ирина Бушуева.
На регулярной ежегодной чистке системы кондиционирования воздуха эксперт советует не экономить, а позаботиться заблаговременно о здоровье своих близких и хорошей работе оборудования. А именно, по словам специалиста, кондиционеры необходимо чистить раз в три года. Но в данном случае идет речь о первой его чистке. То есть, новый кондиционер впервые надо чистить через три года. Уже после этого санацию необходимо делать раз в год. Лучше делать это заблаговременно, перед весенне-летним сезоном, зимой.
Впрочем, надо признать, что чистка – это не панацея. Врачи также советует сотрудникам офисов включать «холодильники» за 10-15 минут до начала работы. Тогда концентрация тех болезнетворных организмов, которые могут обитать в кондиционерах, будет гораздо ниже, чем в сам момент включения.
Разумеется, охлаждением не следует злоупотреблять: если есть возможность не пользоваться кондиционером, то лучше не пользоваться. То, что комфортнее, не обязательно физиологичнее. Тем более что превентивные меры в данном случае не действуют – нельзя намазать нос оксолиновой мазью или выпить антибиотики и не заболеть.
Работников офисов врачи просят внимательно относиться к своему здоровью в летний период. «Если люди в коллективе болеют постоянно, как бы по очереди, кашляют, ощущают недомогание – это повод обратиться к врачу. Особенно следует обратить внимание на невысокую температуру, которая может свидетельствовать о воспалительных процессах в дыхательных органах, в том числе – в легких. Что же касается перепада между температурой в офисе и на улице, то минимальный перепад это не догма, но к нему нужно все-таки стремиться», — подчеркивает Светлана Гук.
Также нужно помнить, что хотя у детского организма и больше ресурсов для регенерации, он все-таки больше подвержен внешнему воздействию. Там где взрослому человеку прохладно, ребенку может быть холодно.
Разумеется, когда от испепеляющей жары некуда деться, в душном офисе нечем дышать, забываешь о мерах предосторожности. Не так просто контролировать ситуацию, когда с тебя градом течет пот, а у тебя всего одно желание – остыть. Но помните, речь идет о куда больших проблемах, чем заложенный нос, воспаление мышц спины и шеи или даже отит. Речь на полном серьезе может идти о летальном исходе.


Предсказание долголетия по форме пупка

Всё самое интересное,интересное, познавательное,,разное,это интересно,факты обо всем,длиннопост,под катом продолжение

Один немецкий психолог несколько лет назад привлек к себе внимание прессы, заявив, что по форме пупка можно не только точно предсказать продолжительность жизни, но и определить общее, психологическое состояние здоровья и характер человека.
Доктор Герхард Рейбман, практикующий в Берлине, утверждает: «Разумеется, существует множество факторов, влияющих на продолжительность жизни. Однако размер, форма и положение пупка могут о многом говорить». Доктор Рейбман советует: «Если вы хотите узнать, как долго проживете, внимательно осмотрите свой пупок, а затем сравните его с описанием шести типов пупков.
Горизонтальный пупок вытянут в стороны. Люди с таким пупком очень эмоциональные, что может отрицательно сказаться на их здоровье. Средняя продолжительность жизни таких людей около 68 лет.
Вертикальный пупок растянут вверх и вниз. Человек с таким пупком уверен в себе, великодушен и эмоционально уравновешен. Средняя продолжительность жизни таких людей около 75 лет.
Выпуклый пупок выступает вперед. Скорее всего, обладатель такого пупка оптимист и энтузиаст. Средняя продолжительность жизни таких людей около 72 лет.
Впалый пупок имеют люди добрые, любящие, осмотрительные, чувственные и подверженные переживаниям. Средняя продолжительность жизни таких людей около 65 лет.
Смещенный от центра живота пупок указывает на то, что человек любит развлечения и часто испытывает перемены в настроении. Средняя продолжительность жизни таких людей около 70 лет.
Круглый пупок ровной формы говорит о том, что человек очень скромный, воздержанный, тихий и застенчивый. Средняя продолжительность жизни таких людей около 81 года».
Доктор Рейбман добавляет, что если человеку подходит описание двух типов пупка, то цифры продолжительности жизни складывают и вычисляет среднее значение.
Развернуть

эволюция биология ...Всё самое интересное 

Тепловой поток через открытую пору способствует непрерывной репликации нуклеиновых кислот и отбору более длинных цепочек

С помощью имитации куска пористой породы из сети крошечных стеклянных капиллярных трубок, которые нагревали с одной стороны, группа немецких ученых создала условия, в которых может быть достигнута стабильная репликация длинных цепочек нуклеиновых кислот (главная предпосылка для возникновения жизни на Земле) и преодолены термодинамические причины их деградации. Ученые предполагают, что на ранних стадиях эволюции Земли такие условия могли возникать в потоке тепловой энергии через пористые породы вблизи гидротермальных источников.

Механизмы репликации нуклеиновых кислот занимают центральное место в теории происхождения жизни на Земле. Согласно этой теории, функцию хранения генетической информации и катализа химических реакций первоначально выполняли комплексы молекул рибонуклеиновых кислот. В ходе дальнейшей эволюции они были заменены комплексами ДНК-РНК-белок, обособленными от внешней среды мембраной. В ходе первичной эволюции на Земле полимеры нуклеиновых кислот должны были постепенно увеличиваться в размере, для того чтобы они смогли принять на себя функцию хранения и воспроизведения информации, которая необходима для нормального функционирования живых организмов. Например, даже самый маленький известный в науке геном бактерии Carsonella (внутриклеточный симбионт насекомых листоблошек) насчитывает 159 662 пар оснований, что в тысячи раз длиннее «геномов» самореплицирующихся рибозимов.

Однако еще в конце 1960-х эксперименты по искусственной эволюции нуклеиновых кислот in vitro (в пробирке) показали, что генетическая информация из длинных молекул нуклеиновых кислот быстро теряется. Происходит это потому, что для самовоспроизведения коротких молекул полимеров требуется меньше материала. Скорость их синтеза намного выше, и это приводит к тому, что короткие молекулы постепенно вытесняют из реакционной среды более длинные молекулы генетических полимеров. Более того, если мутации в процессе репликации могут изменить длину последовательности нуклеинового полимера, то «выживание» только коротких последовательностей — практически неизбежный эволюционный финал.

Так, Сол Шпигельман с коллегами в своих классических исследованиях ввели РНК, выделенную из простого бактериофага Qв, в реакционную смесь, которая содержала фермент репликации РНК того же вируса Qв (так называемая РНК-зависимая РНК полимераза, или РНК-репликаза) и материал для построения новых РНК — одиночные нуклеотиды. В этой среде запустился процесс синтеза новых молекул-копий вирусной РНК. Через некоторое время из исходного раствора небольшая часть синтезированной РНК была перенесена в пробирку со свежей реакционной смесью. Этот процесс регулярно повторяли (см. D. Kacian et al., 1972. A Replicating RNA Molecule Suitable for a Detailed Analysis of Extracellular Evolution and Replication).

В результате через 74 цикла подобных переносов оригинальная цепь, состоявшая из 4500 нуклеотидных оснований, трансформировалась в карликовый геном, содержавший всего 218 оснований. Полученный таким образом Шпигельмановский монстр был способен к очень быстрому размножению. Позднее, в 1997 году, было показано, что в ходе дальнейшей эволюции монстр Шпигельмана становится еще короче. Его «геном» редуцируется всего до 48 или 54 нуклеотидов, которые просто являются местами связывания фермента РНК-репликазы (F. Oehlenschläger, M. Eigen, 1997. 30 Years Later — a New Approach to Sol Spiegelman's and Leslie Orgel's in vitro EVOLUTIONARY STUDIES Dedicated to Leslie Orgel on the occasion of his 70th birthday).

Следовательно, возникает совершенно закономерный вопрос: каким же образом в ходе ранних стадий земной эволюции самопроизвольно протекающий процесс редукции наследственного материала мог бы быть преодолен? Как раз на него и попытались ответить немецкие ученые из Центра нанонауки Мюнхенского университета Людвига–Максимилиана. Они предположили, что довольно простые физические процессы, которые лежат в основе модели выживания более длинных молекул (рис. 1), могут встречаться в естественных условиях в пористых горных породах вблизи гидротермальных источников.

Прежде всего, необходим тепловой поток через небольшие поры, который создает внутри пор температурный градиент. Внешний поток приносит в открытую пору молекулы полимеров разной длины. Подогрев с одной стороны поры слегка уменьшает плотность жидкости, она начинает подниматься по этой стороне. Молекулы полимеров растут, получая строительный материал из внешнего потока, перемещаются в результате диффузии к более холодной части поры и там осаждаются более холодным нисходящим потоком жидкости (движение молекул из зоны с более высокой температурой в зону с более низкой называют термофорезом). В итоге, из-за разности температур, возникает микроциркуляция воды, которая и удерживает более длинные молекулы полимеров, а более короткие молекулы вымываются из поры. Авторы отмечают также, что местная конвекция, которая переносит молекулы постоянно между теплой и холодной зонами, вызывает их циклическую денатурацию. Денатурация ДНК заключается в расплетании и разделении цепей (без разрыва ковалентных связей), что способствует репликации молекул полимеров. Таким образом, сочетание внешнего притока, термофореза и конвекции избирательно улавливает длинные молекулы и вымывает короткие, а общая скорость внешнего притока определяет предельный размер молекул, которые будут «выживать» в данных условиях.

reduced
entropy
(4) Size selection
(2) Influx ^Gravity
(1) Accumulation,Всё самое интересное,интересное, познавательное,,разное,эволюция,биология

Рис. 1.Локальное снижение энтропии является ключевой особенностью живых систем и может быть вызвано потоком тепловой энергии.
a — современные клетки питаются химической энергией, что позволяет им содержать, поддерживать и реплицировать кодирующие информацию полимеры, что необходимо для дарвиновской эволюции.
b — поток тепловой энергии через геологические трещины вблизи источника тепла.
c — (1) температурный градиент в пределах трещины миллиметрового размера индуцирует накопление молекул посредством термофореза и конвекции; (2) внешний поток приносит строительные материалы в открытую пору; (3) экспоненциальная репликация облегчается местной конвекцией, которая переносит молекулы постоянно между теплой и холодной зонами и, таким образом, вызывает циклическую денатурацию нуклеотидов; (4) сочетание внешнего притока, термофореза и конвекции избирательно улавливает длинные молекулы и вымывает короткие. Скорость притока определяет предельный размер молекул в результате отбора по их длине. Рисунок из обсуждаемой статьи в Nature Chemistry


Чтобы проверить эту гипотезу, Браун и его коллеги создали имитацию куска пористой породы из сети крошечных стеклянных капиллярных трубок, которые нагревали с одной из сторон. Они проделали целую серию опытов, в которых отдельно исследовали накопление молекул в капиллярах и фракционирование молекул в тепловом фильтре (рис. 2).

vs = 6 jim S"
Outflow
Trapped DNA fraction
b
'k Flow profile
Concentration
profile
Trapped
Transport (flow x concentration;
1.0
0.8
0.6
0.4
0.2
0.0
-r~ 40
-~r~
60
~r~
80
—i— 100
—I— 120
—i—
140
DNA strand length (bp),Всё самое интересное,интересное,

Рис. 2.«Тепловой фильтр», отбирающий нити по длине.
a. Открывание ассиметрично подогреваемой поры запускает постоянный восходящий «пищевой» поток. Маркер длин двухцепочечных молекул ДНК (от 20 до 200 пар нуклеотидов с шагом 20 пар нуклеотидов), был введен в капилляр-ловушку для оценки длины цепей улавливаемых молекул. Последующая промывка капилляра чистым буфером с постоянной скоростью (vs = 6 микрометров в секунду) продемонстрировала пороговое свойство фильтра — цепочки меньше или равные 80 пар нуклеотидов вымывались из поры, в то время как более длинные цепочки удерживались внутри.
b. Несимметричная структура потока создается наложением восходящего потока и конвекции. Термофорез толкает длинные цепочки в нисходящий поток и захватывает их: накапливает более длинные молекулы в нижней части нисходящего потока. Короткие цепочки подвергаются влиянию общего восходящего потока и покидают пору. Захват цепочек фильтром является функцией скорости общего «пищевого» потока.
c. Скорость внешнего потока vs регулирует разделение нуклеиновых кислот (в поре остаются более длинные молекулы). Как и в эксперименте (a), маркер длин двухцепочечных молекул ДНК был вначале введен при малой скорости потока, которую затем последовательно увеличивали. Высвобожденные из теплового фильтра ДНК измеряли с использованием гель-электрофореза.
d. Удержанные фильтром фракции ДНК, полученные из электрофорезного геля, составляют ландшафт отбора (в двухмерном пространстве факторов: скорость потока — размер молекулы) в пользу длинных олигонуклеотидов в этой термальной среде обитания. Зависящая от скорости захватываемая фракция (то есть молекулы определенной длины: чем выше скорость потока, тем более тяжелая фракция задерживается в поре) описывается моделью динамики в жидкости. Линии разброса отражают соотношение сигнал/шум изображений геля.
Рисунок из обсуждаемой статьи в Nature Chemistry


И конечно же, они изучали действие отбора в созданных ими условиях в популяции реплицирующихся молекул (рис. 3). В последнем эксперименте в раствор вводили термостабильную ДНК-полимеразу (см. также Taq polymerase). В экспериментах они использовали не фрагменты РНК, а фрагменты ДНК. Фрагменты ДНК намного проще получить в лабораторных условиях, а процессы взаимодействия молекул ДНК и РНК со средой очень сходны.

36mer
Time (min)
36mer
75mer
0:00 h
2:15 h
75mer fraction n. Concentration (nM)
Time (min)
Time (h),Всё самое интересное,интересное, познавательное,,разное,эволюция,биология

Рис. 3.Отбор в популяции реплицирующихся молекул ДНК, населяющих термальные местообитания.
a. Молекулы ДНК подвержены температурным колебаниям, которые обусловлены совместным влиянием термофореза, конвекции, «пищевого» потока и диффузии. Моделирование случайных траекторий молекул продемонстрировало, что цепочки длиной 75 пар оснований циркулируют в системе в среднем 18 минут. Цепочки длиной 36 пар оснований из-за их повышенной диффузии демонстрируют более быструю циркуляцию, но вымываются из системы после пяти минут.
b.Термостабильная ДНК-полимераза участвует в репликации двухцепочечных молекул ДНК длиной 80 пар оснований в процессе температурной конвекционной циркуляции. Количественные измерения ДНК, окрашенные флуоресцентным красителем (SYBR Green I), демонстрируют экспоненциальную репликацию с временем удвоения 102 секунды.
c. Открытая пора (см. рис. 1c) была заселена популяцией, состоящей из двух типов нуклеиновых кислот (36 и 75 пар оснований). Количественный электрофорез в геле показал устойчивую репликацию (сохранение в среде в течение 7 часов, до конца эксперимента) только более длинных молекул. Более короткие цепочки снижали численность и затем исчезали (вымывались из реакционной среды), вопреки их более быстрой репликации (меньшему времени удвоения числа молекул).
d. Относительные концентрации двух конкурирующих видов внутри термальных местообитаний. Давление отбора, вызванное термальным градиентом, изменяет в течение времени структуру популяции, состоящей из двух типов молекул (желтые прямоугольники), в соответствии с аналитической моделью репликации. Значения абсолютной приспособленности 1,03 и 0,87 для более длинных и более коротких цепочек соответственно. Без температурного градиента более короткие нуклеотиды выигрывают у более длинных молекул (синие кружки), аналогично данным экспериментов Шпигельмана. Линии разбросаотражают соотношение сигнал/шум изображений геля.
Рисунок из обсуждаемой статьи в Nature Chemistry


Как только исследователи стали проводить эксперименты, они тут же обнаружили, что более длинные цепочки ДНК чаще сохранялись в капиллярах, чем более короткие (рис. 2). В результате более длинные цепочки полимеров воспроизводились намного лучше внутри поры и их число увеличивалось, в то время как более короткие последовательности сократили «численность» настолько, что в итоге они вымерли (рис. 3).

Таким образом, Брауну и его коллегам удалось подобрать такие экспериментальные условиях, в которых стабильно сохранялись цепочки нуклеиновых кислот длиннее монстра Шпигельмана приблизительно в 4 раза. Более того, так как скорость притока определяет предельный размер сохраняющихся в капиллярах молекул, то принципиально возможно подобрать такие условия, при которых будут «выживать» еще более длинные молекулы полимеров.

Другой интересной особенностью проведенного эксперимента был процесс «расселения» полимеров. Когда репликация и захват молекул внутри поры достигают устойчивого состояния, то вновь реплицированные молекулы покидают ловушку-пору вместе с «кормовым» потоком. Это обеспечивает эффективную передачу генетических полимеров в соседние системы пор.

Авторы публикации отмечают, что если в представленную систему ввести процесс мутирования, то такие эксперименты предоставляют захватывающую возможность изучать механизмы дарвиновской эволюции, которые могли бы протекать среди населения молекул в температурных градиентах ранней Земли.

Обсуждаемая статья: Moritz Kreysing, Lorenz Keil, Simon Lanzmich & Dieter Braun. Heatflux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length // Nature Chemistry. Published online 26 January 2015. Doi:10.1038/nchem.2155.


Автор:Владимир Гриньков


Источник: http://elementy.ru/news/432432

Развернуть

Интересный космос ...Всё самое интересное 

Всё самое интересное,интересное, познавательное,,разное,Интересный космос

Чeтыpe способа пpeoдoлeть вселенское ограничение скорости.

Когда Альберт Эйнштейн впервые установил, что свет движется с одинаковой скоростью по нашей Вселенной, он, по сути, установил ограничение скорости на 299 792 458 метров в секунду. Но это не конец. На самом деле это только начало. До Эйнштейна масса — атомы, из которых вы, я и все вокруг состоим — и энергия рассматривались как отдельные величины. Но в 1905 году Эйнштейн навсегда изменил способ физического восприятия Вселенной.

Специальная теория относительности связала массу и энергию вместе в простом, но фундаментальном уравнении E=mc^2. Это маленькое уравнение означает, что никакая масса не может двигаться так же быстро, как свет, или быстрее.

Человечество ближе всего подходило к пределу скорости света в мощных ускорителях частиц вроде Большого адронного коллайдера и Тэватрона. Эти колоссальные машины ускоряют субатомные частицы до 99,99% скорости света, но, как объясняет нобелевский лауреат по физике Дэвид Гросс, эти частицы никогда не достигают космического предела скорости.

Для этого понадобится бесконечное количество энергии, а масса объекта станет бесконечной, что невозможно. (Частицы света фотоны могут двигаться со скоростью света, потому что массы не имеют).

После Эйнштейна физики обнаружили, что некоторые величины могут достигать сверхлюминальных (или сверхсветовых) скоростей и по-прежнему соблюдать космические правила, установленные специальной теорией относительности. Хотя это не опровергает теорию Эйнштейна, оно дает нам представление о своеобразном поведении света и квантовом пространстве.

Световой эквивалент звукового удара
Когда объекты движутся быстрее скорости звука, они создают звуковой удар. Таким образом, в теории, если что-то движется быстрее скорости света, оно должно производить нечто вроде «светового удара».

По факту этот световой удар происходит ежедневно и по всему миру — его можно даже увидеть глазами. Он называется излучением Черенкова (эффектом Черенкова — Вавилова) и выглядит как голубоватое свечение внутри ядерных реакторов (на снимке ниже — Продвинутого испытательного реактора).

Продвинутый испытательный реактор

Излучение Черенкова названо в честь советского ученого Павла Алексеевича Черенкова, который впервые измерил его в 1934 году и был удостоен Нобелевской премии по физике в 1958 году за свое открытие.

Излучение Черенкова светится, потому что ядро реактора погружено в воду с целью охлаждения. В воде свет движется медленнее, его скорость составляет 75% скорости света в вакууме космоса, но электроны, которые рождаются в процессе реакции внутри ядра, движутся в воде быстрее света.

Частицы вроде этих электронов, которые превосходят в скорости свет в воде или какой-либо другой среде вроде стекла, создают ударную волну, подобную ударной волне от звукового удара.

Когда ракета, например, проходит через воздух, она генерирует волны давления перед собой, которые толкают воздух со скоростью звука, и чем ближе ракета к звуковому барьеру, тем меньше времени остается у волн, чтобы уйти с пути объекта. Достигнув скорости звука, ракета смалывает волны в кучу, создавая ударный фронт, который приводит к мощному звуковому удару.

Аналогичным образом, когда электроны движутся сквозь воду со скоростью, превышающую скорость света в воде, они порождают ударную волну света, которая иногда светится синим цветом, но может светиться и в ультрафиолете.

Хотя эти частицы движутся быстрее света в воде, на деле же они не нарушают космического ограничения скорости в 300 000 км/с.

Когда правила не учитываются

Не стоит забывать, что специальная теория относительности Эйнштейна утверждает, что ничто с массой не может двигаться быстрее скорости света; и, насколько физики могут утверждать, вселенная соблюдает это правило. Но как быть с тем, что без массы?

Фотоны по своей природе не могут превзойти скорость света, но частицы света — не единственные безмассовые вещи во вселенной. Пустое пространство не содержит материальную субстанцию, а значит не имеет массы по определению.

«Поскольку ничто не может быть более пустым, чем вакуум, он может расширяться быстрее скорости света, поскольку ни один материальный объект не нарушает световой барьер, — считает астрофизик-теоретик Мичио Каку. — Таким образом, пустое пространство, безусловно, может двигаться быстрее света».

Физики считают, что так и произошло сразу после Большого Взрыва в эпоху инфляции, которую впервые предположили физики Алан Гут и Андрей Линде в 1980-х годах. В течение триллионной триллионной доли секунды Вселенная умножалась на два в размерах и в результате расширилась экспоненциально очень быстро, значительно превысив скорость света.

Квантовая запутанность срезает углы

Квантовая запутанность кажется сложной и пугающей, но в самом простом смысле запутанность — это просто способ взаимодействия субатомных частиц. И что самое интересное в этом явлении, так это то, что процесс этой связи может происходить быстрее света.

«Если два электрона свести достаточно близко, они начнут вибрировать в унисон, в соответствии с квантовой теорией. Потом, если разделить эти электроны сотнями или даже тысячами световых лет, они все равно будут поддерживать связь друг с другом. Если покачнуть один электрон, другой моментально почувствует эту вибрацию, быстрее скорости света. Эйнштейн думал, что это явление должно опровергнуть квантовую теорию, потому что ничто не может двигаться быстрее света».

Но в 1935 году Эйнштейн, Борис Подольский и Натан Розен попытались опровергнуть квантовую теорию в ходе мысленного эксперимента, который Эйнштейн назвал «жутким действием на расстоянии».

По иронии судьбы, их работа легла в основу так называемого парадокса ЭПР (Эйнштейна — Подольского — Розена), который описывает эту мгновенную связь в процессе квантовой запутанности. Это, в свою очередь, может лечь (и постепенно ложится) в основу многих передовых технологий, таких как квантовая криптография.

Мечты о кротовых норах

Поскольку ничто с массой не может двигаться быстрее света, вы можете распрощаться с межзвездными путешествиями — во всяком случае в классическом смысле, с ракетами и обычными полетами.

Хотя Эйнштейн и похоронил наши мечты о глубоком космосе со своей специальной теорией относительности, он дал нам новую надежду на межзвездные путешествия со своей общей теорией относительности в 1916 году.

В то время как специальная теория относительности «женит» массу и энергию, общая теория относительно смыкает вместе пространство и время.

«Единственный возможный способ преодолеть световой барьер может быть скрыт в общей теории относительности и искривлении пространства времени, — считает Каку. — Это искривление мы называем «червоточиной», и она теоретически может позволить нам преодолевать огромные расстояния мгновенно, буквально пронзая насквозь ткань пространства-времени».

В 1988 году физик-теоретик Кип Торн — научный консультант и продюсер фильма «Интерстеллар» — использовал уравнения общей относительности Эйнштейна, чтобы предсказать возможное существование червоточин, которые открыли бы нам дорогу в космос. Но в его случае этим кротовым норам необходима была странная экзотическая материя, которая поддерживала бы их в открытом состоянии.

«Удивительный на сегодня факт: это экзотическое вещество может существовать, благодаря странностям законов квантовой механики», — пишет Торн в своей книге «Наука «Интерстеллара».

И это экзотическое вещество может быть когда-нибудь создано в лабораториях на Земле, хотя и в небольших количествах. Когда Торн предложил свою теорию стабильных червоточин в 1988 году, он призвал сообщество физиков помочь ему определить, может ли во вселенной существовать достаточно экзотического вещества, чтобы сделать существование червоточин возможным.

«Это породило много исследований в сфере физике; но сегодня, спустя тридцать лет, ответ до сих пор неясен, — пишет Торн. Пока все идет к тому, что ответ «нет», но, — Мы пока далеко от окончательного ответа».

Развернуть

The Brights психология ...Всё самое интересное 

Помогаем одному и не помогаем многим

“Неужели трагедия становится все более безразличной для нас по мере нарастания числа ее участников? Эта мысль удручает, и я заранее предупреждаю вас, что следующий ниже текст не предназначен для развлечения, — но, как и в случае со многими другими человеческими проблемами, я считаю важным разобраться в том, что на самом деле движет нашим поведением.

Всё самое интересное,интересное, познавательное,,разное,The Brights,психология
 Эффект определяемой жертвы

  Чтобы лучше понять, почему мы сильнее реагируем на страдания единственного человека, позвольте рассказать вам об эксперименте, проведенном Деборой Смолл (преподавателем университета штата Пенсильвания), Джорджем Ловенстайном и Полом Словичем (преподавателями университета штата Орегон). Деб, Джордж и Пол вручали участникам эксперимента по пять долларов за заполнение опросного листа. Получившим деньги экспериментаторы рассказывали о проблемах, связанных с нехваткой в мире продовольствия.

  Как вы, возможно, уже догадались, информация о дефиците продовольствия доводилась до различных людей по-разному. Одна группа, получившая название «статистическое условие», читала следующий текст:

  «Нехватка продовольствия в Малави привела к страданиям более 3 миллионов детей. Засуха в Замбии в 2000 году привела к 42%-ному падению объемов производства кукурузы. В результате, по некоторым оценкам, 3 миллиона жителей Замбии оказались перед угрозой голода. 4 миллиона ангольцев — треть населения страны — были вынуждены покинуть свои дома. Более 11 миллионов человек в Эфиопии нуждаются в немедленной продовольственной помощи».

  Затем участникам предоставлялась возможность пожертвовать часть заработанных пяти долларов в благотворительный фонд, занимавшийся оказанием продовольственной помощи. Прежде чем продолжить чтение, спросите себя: «Сколько бы я отдал денег, оказавшись на месте участника?»

  Вторая группа, которую исследователи назвали «определяемое Условие», получила статью о Рокии, бедной семилетней девочке из Мали, оказавшейся перед лицом голодной смерти. Участники могли посмотреть ее фотографию и прочитать следующее заявление (составленное по всем канонам прямой рассылки):

  «Ее жизнь могла бы измениться к лучшему в результате вашей финансовой помощи. С вашей помощью и помощью других жертвователей фонд Save the Children сможет помочь Рокии, ее семье и другим членам ее сообщества. Мы сможем накормить ее, дать ей образование, обеспечить медицинскую помощь и научить основам гигиены».

  Так же как и участники группы «статистическое условие», участники группы «определяемое условие» имели возможность пожертвовать часть только что заработанных ими пяти долларов. Спросите себя еще раз, сколько денег вы захотели бы пожертвовать, услышав историю Рокии. Отдали бы вы больше денег для того, чтобы помочь этой девочке, или для того, чтобы помочь справиться с общей проблемой голода в Африке?

  Если вы похожи на большинство участников эксперимента, то отдали бы в пользу Рокии примерно в два раза больше денег, чем на борьбу с голодом (в группе «статистическое условие» средний размер пожертвования составил 23% от заработка участников, однако в группе «определяемое условие» средний размер пожертвования был в два раза больше и составил около 48%). Это является наглядным примером того, что ученые в области социальных наук называют эффектом «определяемой жертвы» (the identifiable victim effect): видя изображение или узнав информацию о конкретном человеке, мы испытываем по отношению к нему более глубокие чувства, а затем отвечаем на этот импульс своими действиями и пожертвованиями. Однако когда информация не носит индивидуального характера, мы не испытываем столь же сильного сострадания и вследствие этого не приступаем к действиям.

  Эффект «определяемой жертвы» не прошел мимо поля зрения множества благотворительных фондов, таких как Save the Children и сотни других.

  Все они знают, что лучшим ключом к нашим кошелькам является сострадание и что примеры личных страданий — один из лучших способов разжечь наши эмоции (рассказ о человеке —> эмоции —> кошелек).

Всё самое интересное,интересное, познавательное,,разное,The Brights,психология
 Близость, яркость и «капля в море»

  Описанные выше эксперименты и истории показывают, что мы готовы тратить свои деньги, время и силы, чтобы помочь «определяемым жертвам», однако не делаем этого в отношении «статистических жертв», например сотен тысяч руандийцев. Какие же причины определяют подобное поведение? Как и в случае многих других сложных социальных проблем, здесь в игру вступает сразу несколько психологических сил. Но прежде чем мы поговорим о них более подробно, попробуйте выполнить следующий мысленный эксперимент:

  Представьте себе, что вы находитесь в Кембридже (штат Массачусетс) и собираетесь пройти собеседование на должность, о которой могли только мечтать. У вас остается еще час до интервью, поэтому вы решаете пройтись пешком от своей гостиницы, для того чтобы посмотреть на город и расслабиться. Переходя по мосту через реку Чарльз, вы слышите крик. В нескольких метрах от себя вы видите в воде девочку, которая, по всей видимости, тонет: она зовет на помощь и жадно хватает ртом воздух. Вы одеты в совершенно новый костюм, а некоторые детали вашего парадного облачения стоят чуть ли не тысячу долларов. Вы хороший пловец, но у вас нет времени для того, чтобы скинуть одежду, ведь девочка вот-вот утонет. Что вы сделаете? Скорее всего, вы без особых размышлений прыгнете в воду, чтобы ее спасти, и уничтожите тем самым и свой новый костюм, и надежды, связанные с собеседованием. Ваше решение прыгнуть, безусловно, характеризует вас как доброго и замечательного человека, но оно частично может быть вызвано тремя психологическими факторами.

  Первый фактор — это ваша короткая дистанция по отношению к жертве. Психологи называют этот фактор близостью. Она не означает близкого расстояния в физическом смысле. Речь скорее идет о чувстве родства: вы близки своим родственникам, социальной группе, а также другим людям, с которыми у вас есть сходные черты. Очевидно (и хорошо), что большинство трагедий мира не случаются рядом с нами с точки зрения физической или психологической близости. Мы лично не знакомы с большинством страдающих людей. Поэтому нам сложно испытывать по отношению к их боли столь же сильное сострадание, какое мы можем испытывать по отношению к родственнику или другу, попавшему в сложную ситуацию. Эффект близости является настолько мощным, что мы с гораздо большей вероятностью поделимся деньгами со своим соседом, потерявшим высокооплачиваемую работу, чем со множеством нуждающихся бездомных людей, живущих в соседнем городе. И еще менее вероятно, что мы поделимся деньгами с теми, кто потерял свой дом на расстоянии 8 тысяч километров от нас.

  Второй фактор носит название «яркость». Если я просто вам скажу, что порезался, вы не получите полной картины события и не почувствуете мою боль. Но если я опишу произошедшее со мной со слезами в голосе, расскажу, насколько глубока рана, какую я испытываю боль и сколько крови потерял, вы получите более яркую картину и начнете сочувствовать мне гораздо сильнее. Аналогичным образом, видя, как тонущая девочка изо всех сил бьется в холодной воде, и слыша ее крик, вы чувствуете необходимость срочно действовать.

  Противоположностью этому фактору является неопределенность. Если вам говорят, что кто-то тонет, но вы сами не видите тонущего и не слышите его крик, то ваши эмоциональные двигатели не включаются. Неопределенность чем-то напоминает взгляд на Землю из космоса. Вы можете видеть контуры континентов, голубые глубины океана и горные цепи, но не можете разглядеть ни дорожных пробок, ни загрязненных лесов, ни преступлений, ни войн. Издалека все выглядит мирным и милым, и мы не чувствуем потребности что-либо Менять.

  Что касается третьего фактора, то психологи называют его эффектом «капли в море». Он связан с вашей верой в свою способность лично и в одиночку помочь жертвам трагедии. Подумайте о какой-нибудь развивающейся стране, множество жителей которой умирают от загрязненной воды. Максимум того, что может в этой ситуации сделать каждый из нас, — поехать в эту страну и помочь ей в строительстве нормальной очистной системы. В условиях такой масштабной проблемы, а также с учетом того, что лично мы можем решить лишь небольшую ее часть, у каждого из нас возникает соблазн эмоционально закрыться и сказать себе: «А в чем, собственно, дело?»

  Чтобы оценить, насколько сильно вышеперечисленные факторы могут повлиять на ваше собственное поведение, задайте себе ряд вопросов. Что если бы девочка, которую вы спасли, жила не в этом городе, а в далекой стране, пострадавшей от цунами, а вы могли бы облегчить ее участь, сделав небольшой благотворительный взнос (значительно меньший, чем цена вашего костюма)? Были бы вы готовы столь же охотно помочь ей своими деньгами? А что если бы ситуация была не столь очевидной и непосредственная угроза жизни девочки отсутствовала? Давайте предположим, что она находилась бы в опасности вследствие эпидемии малярии в ее стране. Был бы ваш порыв помочь ей столь же сильным? А что если в ее стране есть множество других детей, находящихся перед прямой угрозой эпидемии диареи, СПИДа или лихорадки Эбола? Будете ли вы испытывать разочарование от своей личной неспособности решить эту проблему? Что произойдет с вашим желанием помочь?

  Если бы я был азартным человеком, то поспорил бы с вами, что ваше желание помочь многим детям, находящимся перед угрозой заболевания в далекой стране, будет куда более слабым, чем желание помочь родственнику, другу или соседу, умирающему от онкологического заболевания. (Чтобы вы не думали, что я вас укоряю, скажу, что сам веду себя точно так же.) Дело не в том, что вы якобы жестокосердны. Просто вы обычный человек и трагедию, пусть даже масштабную, но разразившуюся за много миль от вас, воспринимаете гораздо более отстранение». Когда мы не можем увидеть мелкие детали, то страдания других людей кажутся нам менее яркими, а следовательно, мы реже действуем в ответ на них.

  Если задуматься, то миллионы людей по всему миру тонут, страдают от голода, войн и болезней практически каждый день. Даже небольшая помощь с нашей стороны могла бы помочь им в улучшении ситуации, однако большинство из нас не предпринимают ничего именно «благодаря» комбинации близости, яркости и эффекта «капли в море».

  Томас Шеллинг, лауреат Нобелевской премии в области экономики, отлично описал разницу между определяемой и статистической жизнью:

  «Представьте себе, что шестилетней девочке с каштановыми волосами до Рождества нужно собрать несколько тысяч долларов на операцию, которая поможет спасти ей жизнь, — почта моментально окажется перегруженной пожертвованиями. Теперь представим себе людей, узнающих о том, что после отмены налога с продаж больница в Массачусетсе приходит в упадок и это приведет к значительному росту смертности, — мало кто проронит хоть слезинку или потянется за чековой книжкой».

  Эти результаты показались мне крайне удручающими, но это было еще не все! У первого эксперимента, проведенного Деборой, Джорджем и Полом, в котором был выявлен эффект «определяемой жертвы» (вследствие которого участники были готовы дать в пользу Рокии в два раза больше денег, чем на решение глобальной проблемы), имелось и еще одно условие. В рамках этого условия участники, по отношению к которым не проводилась настройка, одновременно получали информацию как о Рокии, так и о проблеме нехватки продовольствия в регионе.

  Теперь попытайтесь догадаться, сколько денег пожертвовали участники в этом случае. Столько же, сколько участники, знавшие только о Рокии? Или так же мало, как участники группы, знавшие лишь о статистических цифрах глобальной проблемы? Или размер их пожертвований был где-то посередине? С учетом печальной тональности этой главы вы уже можете догадаться о результатах. Участники, находившиеся в группе «смешанного условия», были готовы поделиться 29% своего дохода — это немного выше, чем у 23% участников в «статистическом условии», но гораздо меньше, чем 48% пожертвований участников, знавших о конкретном человеке, страдавшем от проблемы. Проще говоря, участникам оказалось сложно одновременно думать о цифрах и испытывать эмоции.

  Итак, собранные воедино результаты эксперимента демонстрируют нам довольно печальную картину. Когда нас призывают подумать об одном человеке, мы склонны предпринимать какие-то действия; когда же дело касается многих людей — мы остаемся бесстрастными. Холодный расчет не заставляет нас сосредоточиться на решении больших проблем — напротив, он подавляет наше сострадание. Таким образом, рациональное мышление в стиле Спока, которое, казалось бы, должно способствовать принятию более взвешенных и разумных решений, делает нас менее альтруистичными и заботливыми. Как писал Альберт Сент-Дьёрди, известный врач и исследователь: «Я бываю глубоко тронут видом страдающего человека и готов рисковать своей жизнью ради него. Но я могу достаточно спокойно говорить о возможных эпидемиях в крупных городах, способных уничтожить сотни тысяч человек. Я просто не способен умножить страдания одного человека на 100 миллионов»”.

Всё самое интересное,интересное, познавательное,,разное,The Brights,психология

Ариели Д. «Позитивная иррациональность». М.: Издательство «Манн, Иванов и Фербер», 2010. Стр. 226-236.
Развернуть

The Brights психология заблуждения песочница ...Всё самое интересное 

Апофения или поиск сюжетов в реальном мире

“Писатели и сценаристы давно овладели приемом общих мест, доступных любому читателю и зрителю, поэтому созданные ими сюжеты могут удовлетворить любой ум и вкус. Первым делом нужен такой образ главного героя, чтобы читатель или зритель имел возможность отождествить себя с ним. Герой становится намного ближе, если у него пошла полоса неудач, если он терпит поражение или сбивается с пути праведного. Отважный человек, идущий один против множества врагов, безоговорочно вызывает вашу симпатию. В начале фильма или книги герой спасает неважно кого — главное, что спасает, — и отныне вы уже любите его. Герою обязательно мешает трусливый негодяй или законченный эгоист, а еще лучше настоящий злодей, причиняющий людям сплошные мучения, пренебрегающий всеми нормами морали. Герой — желательно вместе с героиней — покидает свой привычный мир, и начинаются приключения. Когда его поражение или даже гибель кажутся неизбежными, он превозмогает все трудности, одолевает врага, попутно спасая город или целый мир. Затем наш герой, который благодаря испытаниям сделался еще лучше, с триумфом возвращается домой. Правда, если предполагается жанр трагедии, конец для героя окажется еще печальнее начала.

Американский филолог Джозеф Кэмпбелл посвятил жизнь сравнительному анализу мифологий народов мира, выявляя и исследуя единые для всего человечества образы, сюжеты и модели поведения, — тот материал, из которого сплетались истории, известные всем с детства. Сюжет, что мы набросали выше, представляет собой, согласно Кэмпбеллу, мифологическую схему странствия героя, и если вспомнить все книги и фильмы, прочитанные и пересмотренные с детства, вы убедитесь, что почти каждая история представляет собой вариации на одну и ту же тему. Сюжетный архетип — странствие героя, — пройдя путь от фольклора и античной драмы до кинематографа и видеоигр, входит в ваш мозг, словно ключ в замок.

Вы с удовольствием смотрите, как хорошо оплачиваемые актеры профессионально разыгрывают действо, ведь для вас естественно мыслить мифологемами, устоявшимися сюжетами и любимыми образами; более того, вы и реальных людей склонны воспринимать в виде знакомых персонажей. Точные науки, основанные на логических рассуждениях, не столь понятны вашему рассудку, как социальные ситуации. Отчетливо представляя свою роль и место на сцене, которая называется историей вашей жизни, вы и в своих воспоминаниях, как при просмотре фильма, пролистываете и отбрасываете все скучное и выделяете главные узлы — сюжетные архетипы.

Вы верите в определенный тип сюжета, в детектив, развертывающийся в реальном мире, что-то вроде «Кода да Винчи» или «Остаться в живых», где таинственные совпадения находятся в центре общего замысла, и все время, как части единой мозаики, появляются некие подсказки, в итоге удивительным образом совпадающие. Разумеется, такие сюжеты, которые медленно раскрывают свою тайну, завораживают, и мы неотрывно читаем страницу за страницей или ставим диск с очередной серией, чтобы поскорее узнать, как дальше повернутся события, а главное — как в итоге все разрешится.

Поиск сюжетов в реальном мире — это особый диагноз, апофения. Термин «апофения» охватывает множество явлений: от техасского стрелка до парейдолии — оптических иллюзий. Как вы помните, синдром техасского стрелка заключается в том, чтобы нарисовать мишень вокруг случайных явлений и обрести таким образом смысл в хаосе. Парейдолия — это умение разглядеть в облаках или ветках деревьев лица, символические знаки и «скрытые сообщения». Апофения отказывается верить в случайность и совпадения, для нее не существует фонового шума.

Апофения обычно возникает при синхронизме, то есть временных и событийных совпадениях. Вам кажется, что мир насыщен «говорящими» числами, даже если умом вы понимаете, что в них нет ничего особенного. Когда числа, составляющие дату, выстраиваются в интересную последовательность, например 08.09.10, люди склонны придавать этому особый смысл. Как не обратить внимание, если неупорядоченная стихия времени вдруг обретает особый ритм. Вы бросили взгляд на часы — 11:11. В следующий раз посмотрели — 12:12. На миг душу пронзает ощущение чуда — и жизнь продолжается. Но случаются и более разительные совпадения: например, ночью вам снится потоп, а утром в новостях вы слышите, что в каком-то отдаленном уголке Земли разразилось наводнение, тысячи людей остались без крова — и холодок бежит по спине.

Но когда совпадения и случайные числовые последовательности кажутся вам чем-то большим, чем случайно поданный сигнал, — с этого момента апофения превращается в настоящую проблему. Вы воображаете, например, что среди ваших знакомых и близких смерть всегда приходит трижды, и вас нисколько не смущает мысль о бренности любой жизни. Вы придаете особый смысл тому обстоятельству, что ваш день рождения совпадает с днем рождения десятка ваших любимых артистов, и полностью игнорируете вероятность, что в тот же день родились еще приблизительно 16 миллионов человек. Число 23 обретет над вами особую власть, ибо оно все время вам попадается — по правде говоря, не чаще любого другого, но так случилось, что вы его выделили. Профессиональные игроки, просидев всю ночь напролет, начинают различать некие последовательности в картах или «серии» в рулетке, хотя вероятность выпадения того или иного числа или карты всегда остается постоянной. Человеку, трижды подряд выигравшему в лотерею, по вашему мнению, помогает волшебная удача, но скучная статистика говорит, что подобное случается довольно часто.

Если все события своей жизни вы соединяете в сюжет и придаете этому сюжету высшее, мистическое значение, это уже истинная апофения. Скажем, вы переходите через дорогу, какой-то бомж хватает вас за пиджак и оттаскивает в сторону, буквально спасая от проносящегося мимо мотоцикла. Вы предлагаете ему деньги в награду за спасение жизни, но бродяга гордо отказывается. На следующий день вы читаете в газете, что в вашем городе стало больше бездомных, и это превращается в настоящую проблему. Неделю спустя вы заглядываете в Интернет в поисках интересной работы и обнаруживаете вакансию социального работника, причем именно в том городе, куда вам давно хотелось переехать. Может показаться, что история вашей жизни складывается из подобных событий, подводящих вас к предназначению — помогать бедным. Вы бросаете работу, переезжаете в другой город и с увлечением беретесь за новое дело. С такой точки зрения апофения не так уж плоха: вам требуется вера и смысл, чтобы каждое утро заставлять себя жить, преодолевая повседневные трудности. Только нельзя забывать, что смысл не приходит извне, смысл жизни — это сугубо внутренний процесс.

Ваш разум устроен таким образом, что повсюду различает порядок, даже если порядок задается культурой, а не нашими органами чувств. Древние греки и жители Вавилона приписывали числам мистическое значение, а потому находили то или иное число во всех аспектах человеческой жизни. То же самое можно сказать и о первых христианах, которые особо чтили Троицу и число три. Во всех религиях и культурах какие-то числа получают преимущество перед другими, и сразу вступает в свои права апофения, побуждая людей видеть эти «символические» числа повсюду. Вы предпочитаете круглые числа, к которым вас приучила десятичная система счисления, и по возможности группируете предметы и события в аккуратные кучки по 10, 50,100 и т. д. На десятичной системе счисления основана и наша монетарная система.

Скептики противопоставляют апофении закон больших чисел: при достаточно большом количестве случайных событий и чисел совпадения неизбежны. На Земле живет без малого 7 миллиардов человек, тут любые случайности становятся неизбежностью, однако люди обращают внимание на совпадения, запоминают их, пересказывают друг другу, интересные случаи попадают в новости, а миллионы не нагруженных смыслом ситуаций просто никого не интересуют. В результате вы живем словно в средоточии сюжетов, где главную роль играют совпадения.

Известный английский математик, профессор Кембриджского университета Джон Идензор Литлвуд описал законы больших чисел в книге «Математическая смесь» (Littlewood’s Miscellany), вышедшей уже после его смерти, в 1986 году. Он приводит простое соображение: за восемь часов активной и сознательной ежедневной деятельности с человеком ежесекундно что-то происходит, то есть за 35 дней он в среднем переживает миллион микрособытий, а значит, даже то событие, которое, на его взгляд, выпадает раз на миллион, вполне может произойти раз в месяц. Это правило ежемесячного чуда получило название «закон Литлвуда».

Апофения возникает главным образом из-за предвзятости подтверждения — одного из самых распространенных когнитивных искажений. Вы видите лишь то, что хотите видеть, игнорируя все остальное. Когда вы хотите увидеть некий смысл в своей жизни, то все прочее, что не несет этого смысла, вами выбрасывается за борт. Апофения — это не просто порядок, сотворенный из хаоса, это уверенность, что именно данный смысл вам было предназначено увидеть. Чудеса в жизни происходят крайне редко, потому вам надо следить за ними внимательно и расшифровывать значение каждого. Однако с математической точки зрения доказано, что чудо происходит каждый раз, когда вы перелистываете страницы этой книги.


Макрэйни Д. «Психология глупостей. Заблуждения, которые мешают нам жить». М.: «Альпина Бизнес Букс», 2012. Стр. 105-110.

Развернуть

The Brights технологии ботаника экология экономика ...Всё самое интересное 

Фермы-небоскребы

Всё самое интересное,интересное, познавательное,,разное,The Brights,технологии,ботаника,экология,экономика

Площадь земель, снабжающих все 6,8 млрд жителей нашей планеты сельскохозяйственной продукцией, равна площади Южной Америки. По прогнозам демографов, мировое народонаселение к 2050 г. Возрастет до 9,5 млрд. Производительности сельского хозяйства человечеству придется освоить еще 0,85 млрд га (площадь Бразилии). Но такого количества земли для нового освоения просто не существует. Как тут не вспомнить слова великого Марка Твена: «Покупайте землю, ее больше не делают»?

В сельском хозяйстве на ирригацию идет 70% мировых запасов пресной воды, которая после загрязнения удобрениями, пестицидами, гербицидами и илом становится непригодной для питья. При современных тенденциях развития невозможно сохранить чистоту питьевой воды в отдельных густонаселенных регионах. В сельском хозяйстве также используется огромное количество топлива: в США, например, — 20% от всего потребляемого бензина и дизельного топлива. Безусловно, в первую очередь нас беспокоит парниковый эффект. Учтем, что в цену на пищевые продукты входит и цена на топливо. Ввиду этого за 2005 – 2008 гг. стоимость продуктов питания возросла в большинстве мест по всему миру примерно вдвое. 

Некоторые агрономы уверяют, что решение проблемы лежит в области интенсификации производства, которое уже сегодня ведется высоко механизированными сельскохозяйственными объединениями. Число их постоянно снижается, но они получают большие урожаи за счет применения достижений генной инженерии и все более сильных агрохимикатов. Даже если претворить упомянутое решение в жизнь, то это может дать в лучшем случае лишь краткосрочный результат, т.к. быстрые климатические изменения влекут за собой перестройку сельскохозяйственных угодий, расстраивая самые изощренные планы. Вскоре после вступления в должность президента Барака Обамы министр энергетики Стивен Чу (Steven Chu) заявил о климатических изменениях, которые могут стереть с лица земли поля Калифорнии к концу этого столетия. 

Более того, если мы продолжим массовые вырубки леса под новые сельскохозяйственные угодья, глобальное потепление усилится с катастрофической скоростью. А увеличенный сток с полей и животноводческих ферм может привести к образованию «мертвых водных зон», когда большинство эстуариев и даже часть океана превратятся в бесплодные отравленные акватории. 

Все это пока не вызывало тревоги, но болезни, связанные с употреблением испорченной пищи, унесли изрядное число жизней по всему миру. Виной тому стали сальмонеллез, холера, кишечные инфекции, вызванные Escherichia coli, дизентерия. И этот список далеко не полон. Паразитарные инфекции — малярия и шистосомоз — усугубляют проблему, угрожая жизни людей. Более того, применение в качестве удобрений человеческих фекалий, широко практикуемое в большей части Юго-Восточной Азии, во многих регионах Африки, Центральной и Южной Америки, где химические удобрения слишком дороги, способствует распространению глистных инвазий, от которых страдает 2,5 млрд чел.

Очевидно, что нужны радикальные перемены. Почти со всеми перечисленными проблемами мог бы покончить один стратегический сдвиг — выращивание сельскохозяйственных культур под строгим контролем в закрытом грунте в вертикально обустроенных хозяйствах. Растения, выращенные в высотных зданиях, воздвигаемых ныне на свободных городских землях, и главным образом в многоярусных теплицах, размещенных на крышах, могли бы давать пропитание круглый год, потребляя значительно меньше воды, производя небольшое количество отходов, с меньшим риском инфекционных заболеваний. При этом не требуется работающей на ископаемом топливе техники или транспортных средств для перевозки продукции с отдаленных ферм. Вертикальные хозяйства могли бы совершить революцию в нашем образе питания и послужить для будущего растущего населения. Продукты, выращенные на местах, могли бы стать даже вкуснее.

Рабочий план, который я собираюсь изложить, может показаться на первый взгляд неправдоподобным. Но инженеры, градостроители, агрономы, тщательно исследовавшие необходимые технологии, убеждены, что вертикальные хозяйства не просто возможны, но необходимы.

➡ Не навреди

Выращивание пищи на земле, которая когда-то была покрыта девственными лесами и степями, убивает нашу планету, запуская процесс нашего вымирания. Людям следует выполнять хотя бы минимальное требование, которое на языке медиков звучит: «Не навреди». В данном случае мы говорим о том, что не следует наносить дальнейшего ущерба земле. Человечество возникло, чтобы отвоевать себе невероятные преимущества. Со времен Чарлза Дарвина — середины 1800-х гг. и далее — после предостережений Томаса Мальтуса о конце мира из-за неконтролируемого роста населения был осуществлен целый ряд спасительных технологических прорывов. Всевозможные сельскохозяйственные машины, улучшенные удобрения и пестициды, искусственно выведенные растения, обладающие большей продуктивностью и устойчивостью к болезням, плюс вакцины и лекарства от общих заболеваний животных привели к избытку пищи, в котором увеличивающееся население планеты порой не испытывало нужды. 

Все это продолжалось до 80-х гг. прошлого столетия, когда стало очевидным, что во многих местах нагрузка сельского хозяйства на землю чрезмерно превысила ее возможность поддерживать жизнеспособность культивируемых растений. Сельскохозяйственные химикаты нарушили естественный кругооборот питательных веществ, благодаря которому существуют природные экосистемы. Мы должны перейти к более экологичным агротехническим методам, способствующим устойчивости экосистем. 

Известный эколог Говард Одум (Howard Odum) сказал: «У природы есть ответы на все вопросы. Какой хотите задать вы?» Мой вопрос таков: «Как нам всем жить хорошо, одновременно с этим возобновляя мировые экосистемы?» Многие климатологи, от должностных лиц Продовольственной и сельскохозяйственной организации ООН (ФАО) до специалиста по устойчивому развитию и лауреата Нобелевской премии 2004 г. Вангари Маатхаи (Wangari Maathai), согласны, что дать возможность обрабатываемым землям вернуться к их естественному состоянию, покрыться травой или лесом, — это самый легкий и прямой путь к замедлению климатических изменений. Природные экосистемы естественным способом поглощают из окружающего воздуха углекислый газ, столь сильно способствующий парниковому эффекту. Надо оставить биосферу в покое и дать ей возможность вылечить нашу планету.

Здесь можно привести множество примеров. Зона демилитаризации между Южной и Северной Кореей, созданная после Корейской войны 1950–1953 гг., представляла собой полосу сильно изрытой войной земли шириной более 4 км, однако сегодня она целиком восстановилась, покрыта пышной растительностью и полна жизни. Когда-то превращенный в голую землю рубеж, разделявший бывшие Западную и Восточную Германию, сегодня радует зеленью. Район пыльных бурь США, в 30-х гг. прошлого столетия лишенный растительности из-за засух и чрезмерного сельскохозяйственного использования, сегодня снова стал высокопродуктивной житницей страны. А в Новой Англии, с 1700-х гг. пострадавшей от сплошной вырубки деревьев по крайней мере три раза, сегодня имеются обширные участки лиственных и хвойных лесов.

➡ Взгляд в будущее

По ряду причин все увеличивающееся население мира нуждается в альтернативных методах ведения сельского хозяйства. Неужели городские небоскребы — верный выбор? 

Отчасти, поскольку выращивание урожая в закрытом грунте становится повсеместным. Во всем мире успешно используются три вида агроприемов: капельное орошение, аэропоника и гидропоника. При капельном орошении растения укореняются в лотках из легких инертных материалов длительного пользования, таких как вермикулит, а тонкие трубки, протянутые от растения к растению, подведены точно к основанию каждого стебля, куда по каплям поступает питательный раствор. Таким образом отпадает необходимость в большом количестве воды, напрасно расходуемой при традиционных способах орошения. При выращивании методом аэропоники, разработанном в 1982 г. К.Т. Хубиком (K.T. Hubick), а затем усовершенствованной учеными NASA, растения находятся в подвешенном состоянии в воздухе, насыщенном водным паром и питательными веществами, вследствие чего исключается необходимость и в почве. 

Агроному Уильяму Джерику (William F. Gericke) приписывается разработка в 1929 г. Современной гидропоники. Корни растений помещаются в желобах без почвы, по которым циркулирует питательный раствор. Во время Второй мировой войны на южных островах Тихого океана с помощью гидропоники было получено около 4 тыс. т овощей для армий союзных держав. Сегодня теплицы, применяющие гидропонику, служат подтверждением основных правил растениеводства закрытого грунта: культуры должны давать урожай круглый год; разрушительные засухи и наводнения не мешают урожаю; ввиду идеальных условий для роста и созревания культур достигаются максимальные урожаи; патогенное влияние человека — минимально. 

Самое важное то, что гидропоника позволяет выбрать место произрастания урожая безотносительно природных условий, т.е. характеристик почвы, осадков, температуры воздуха. Закрытые хозяйства могут быть размещены везде, где есть соответствующее снабжение водой и энергией. Теплицы больших размеров с применением гидропоники работают в Великобритании, Нидерландах, Дании, Германии, Новой Зеландии и других странах. Один из выдающихся примеров — хозяйства Eurofresh Farms в пустыне штата Аризона, занимающие площадь в 128,79 га, где круглый год производится большое количество высококачественных помидоров, огурцов и перца. 

Большинство теплиц расположены на границе сельской местности и городских земель, где можно найти участки по умеренным ценам. Перевозка на большие расстояния повышает стоимость продуктов, требует расхода топлива, сопровождается выбросами двуокиси углерода и значительно вредит природе. Перенесение тепличного хозяйства в более высокие постройки в черте города поможет устранить и эти проблемы. Я представляю себе здания, возможно, в 30 этажей, занимающие целый квартал. При таких масштабах вертикальные хозяйства обещают стать примером действительно устойчивой городской жизни: коммунальные сточные воды преобразуются в оросительные, при этом твердые отходы вместе с несъедобными частями растений сжигаются, а образующийся пар вращает турбины, генерирующие электроэнергию, которая поступает в теплицы. С использованием современных технологий в закрытом грунте может быть выращен большой ассортимент съедобных растений (илл. на стр. 57). По соседству в аквацентрах можно будет также разводить рыбу, креветок и млллюсков. 

Субсидии на начальные исследования и финансируемые государством научно-исследовательские центры — один из путей, чтобы положить начало вертикальным хозяйствам. Совместная работа университетов и таких компаний, как, например, Cargil, Monsanto, Archer Daniels Midland и IBM, также могла бы быть хорошим начинанием. Для реализации любого из упомянутых подходов потребуется огромный научный потенциал сельскохозяйственных, технических, архитектурных и учебных учреждений, а также опытные хозяйства, возможно, высотностью в пять этажей и площадью 0,5 га. На таких площадках выпускники вузов, научные сотрудники и конструкторы смогут проводить первоначальные испытания перед тем, как появятся полноценные действующие хозяйства. Можно было бы опробовать и более скромные площадки на крышах жилых домов, больниц и учебных заведений. Научно-исследовательские установки уже действуют в Калифорнийском университете в Дэвисе, Государственном университете Пенсильвании, Университете Рутгерса, Государственном университете Мичигана, а также в ряде учебных заведений Европы и Азии. Один из самых известных экспериментальных полигонов — Сельскохозяйственный центр под руководством Джина Джакомелли (Gene Giacomelli) при Университете Аризоны. 

Интеграция пищевого производства в городскую жизнь — это гигантский шаг на пути устойчивого развития городов. Станут развиваться новые отрасли производства, а также появятся совершенно новые для города профессии — служащие питомников, растениеводы, сборщики урожая. И природа сможет снова ожить, а обычные фермеры будут рады выращивать траву и деревья, внося свою лепту в обуздание выбросов CO2. В завершение картины выборочные лесозаготовки станут нормой для деревообрабатывающей промышленности, по крайней мере в восточной части США.

➡ Страстная мечта

Прошло пять лет с того момента, как я впервые опубликовал некоторые свои мысли и предварительные эскизы вертикальных ферм на своем сайте (www.verticalfarm.com). С тех пор архитекторы, инженеры, конструкторы и ведущие организации стали все больше обращать внимание на данный проект. Сегодня на его сторону встали многие инвесторы, мэры и градостроители, выразив недвусмысленное желание строить высотные фермы. Ко мне уже обращались планировщики из Нью-Йорка, Портленда, Орегона, Лос-Анджелеса, Лас-Вегаса, Сиэтла, Суррея, Британской Колумбии, Торонто, Парижа, Бангалора, Дубаи, Абу-Даби, Инчхона, Шанхая и Пекина. Иллинойсский технологический институт в настоящее время занят проработкой подробного плана для Чикаго. 

Все эти люди сознают, что мы должны приступить к действию, чтобы обеспечить будущее поколение продуктами питания. Они ставят трудные вопросы по поводу стоимости, прибыли от инвестированного капитала, использования воды и электроэнергии, возможных урожаев. Их беспокоят будущее состояние балок конструкций, которые с течением времени подвергнутся коррозии во влажном воздухе, мощности, необходимые для закачки воды и воздуха в различные места этих сооружений, экономия, обусловленная ростом масштабов производства. Чтобы дать подробные ответы, потребуется немалая работа инженеров, архитекторов, агрономов, специалистов по закрытому грунту и деловых людей. Вероятно, подающие надежды инженеры и экономисты хотели бы, чтобы уже начались соответствующие расчеты. 

Благодаря сайту инициатива по обустройству вертикальных ферм оказалась в руках общественности. И ее успех или провал зависит как от тех, кто возьмется построить опытную ферму, так и от того, сколько времени и усилий это потребует. Печально известный проект замкнутой экосистемы «Биосфера-2», стартовавший в 1991 г. и представлявший собой сеть герметичных зданий близ Тусона, штат Аризона, в которых в течение двух лет проживали восемь поселенцев, — яркий пример того, как не надо делать. В плане была заложена слишком громоздкая конструкция, и он не был экспериментально обоснован. У Университета Аризоны сейчас есть все права пересмотреть данный проект. 

Чтобы сооружение вертикальных ферм прошло успешно, планировщики должны избежать ошибок данного и других ненаучных предприятий. Есть обнадеживающая новость. По словам Питера Хеда (Peter Head), одного из ведущих специалистов по экологическим проектам, руководящего глобальным планированием в международной проектно-конструкторской фирме Arup, базирующейся в Лондоне, для сооружения большого эффективного вертикального хозяйства в городе не требуется применения новых технологий. Многие энтузиасты спросят: «Тогда чего мы ждем?» У меня нет однозначного ответа на этот вопрос.

Диксон Д. «В мире науки» № 1, 2010. Стр. 53-59. Перевод В.И. Сидоровой.

Развернуть

чудо вера бог Божья Матерь религия Иисус Христос атеизм антирелигия песочница #всё плохо ...Всё самое интересное фэндомы разная политота 

Чудотворная икона Божьей Матери "Призри на смирение" отразилась на стекле

чудо,вера,бог,Божья Матерь,религия,Христос,Иисус Христос,атеизм,антирелигия,демотиваторы про религию, юмор, шутки и приколы про религию,песочница,Всё самое интересное,интересное, познавательное,,разное,всё плохо,все плохо (и саловатно),фэндомы,разная политота

т, л '4v tJkÆv* 5 ; ш . • 1 ' V к * Я * -ft. ^ •t ■^чж.е> -V V' N ЩШ** - - —,чудо,вера,бог,Божья Матерь,религия,Христос,Иисус Христос,атеизм,антирелигия,демотиваторы про религию, юмор, шутки и приколы про религию,песочница,Всё самое интересное,интересное, познавательное,,разное,всё

Однажды после молитвы перед иконой глухонемая от рождения девочка заговорила. Удивлённая бабуш­ка стала расспрашивать её, как это произошло. – «Тётя на меня подула», – сказала внучка, указывая на чу­десный образ Богоматери.

Как-то раз женщина с дочкой поехала на отдых на реку, плыли на лодке к берегу. В соседней лодке мужчина ловит рыбу, а они плывут. До берега остается очень маленькое расстояние, и девочка говорит маме: «Я уже прыгну и пойду». Она как прыгнула, только пузыри и пошли оттуда. А мужчина спрашивает: «Девочка умеет плавать?» — «Нет». — «Так здесь огромная яма, - говорит он. — Как вы пустили ребенка?»Мать стала в лодке, замерла и не знала, что говорить и делать. Первое, что пришло в голову – икона Богородицы «Призри на смирение»: «Я к ней воззвала со всего сердца, поняла, что просто теряю ребенка. Вижу, на воде появилось отображение Божьей Матери — точно такое, как рядом с иконой на стекле, и в какие-то доли секунды выныривает мой ребенок». Когда она спросила дочь, как та вынырнула, девочка сказала: «Ты меня позвала» - она под водой услышала мамин голос и как будто кто-то потянул ее вверх.

В Вольнянске исцелилась слепая женщина, которую в церковь обычно водила внучка. Приложившись к иконе, она повернулась к людям со словами: "Люди, я теперь вас всех вижу!" Мы это видели, на наших глазах это произошло.

Одним из первых подтверждений чудотворности образа был случай исцеления молодой женщины, заболевшей гепатитом (желтухой) в то время, когда она готовилась стать матерью. Врачи, проводившие наблюдения за больной, требовали немедленно прекратить беременность, считая, что болезнь губительно скажется на здоровье младенца. Но молодая женщина, будучи верующим человеком, побоялась взять на себя грех убийства во чреве собственного ребенка. Три дня она молилась перед образом Богородицы, прося о помощи. Вскоре были сделаны повторные анализы, которые показали внезапное приостановление болезни. Родившаяся девочка была совершенно здорова.

Известен случай, когда мальчик, получивший 60 процентов ожога тела, был исцелен елеем от чудотворной иконы.

В 1993 году образ Божьей Матери отобразился на стекле настолько четко, что отпечаток и сегодня представляет из себя точную копию иконы.И пока в течение двух лет велись исследования, экспертизы, а параллельно дискуссии и споры вокруг этого явления, по молитвам у иконы стали совершаться настоящие чудеса. В итоге состоялся круглый стол, на котором специалистами было признано, что изображение на стекле - нерукотворное.

чудо,вера,бог,Божья Матерь,религия,Христос,Иисус Христос,атеизм,антирелигия,демотиваторы про религию, юмор, шутки и приколы про религию,песочница,Всё самое интересное,интересное, познавательное,,разное,всё плохо,все плохо (и саловатно),фэндомы,разная политота

Чудес происходит очень много, видите, сколько всего на иконе - люди приносят это в благодарность Божьей Матери...
Получив исцеление, многие благодарят Божью Матерь, дарят что-нибудь к иконе или просто с благодарностью молятся. О чуде или исцелении узнают самые близкие. Приходит, например, человек, заказывает благодарственный молебен перед иконой «Призри на смирение». Мы спрашиваем: «По какой причине?» — «Поблагодарить хочу Божью Матерь за милость, которую на оказала». — «А какую милость?» — «Да я об этом говорить не буду...» Не станешь ведь пытать человека: расскажи да расскажи. Стекло, на котором отобразилась Божья Матерь, теперь выносится на поклонение верующим. Одержимые нечистым духом люди с трудом приближаются к этому стеклу. Благодатная сила, которой обладают икона и стекло, реальна и действительна.
Развернуть
Смотрите ещё
В этом разделе мы собираем самые смешные приколы (комиксы и картинки) по теме Наука немцы (+499 картинок)